作者
Miki E Verma, Robert A Bridges, Michael D Iannacone, Samuel C Hollifield, Pablo Moriano, Steven C Hespeler, Bill Kay, Frank L Combs
发表日期
2024/1/22
期刊
PLoS one
卷号
19
期号
1
页码范围
e0296879
出版商
Public Library of Science
简介
Although ubiquitous in modern vehicles, Controller Area Networks (CANs) lack basic security properties and are easily exploitable. A rapidly growing field of CAN security research has emerged that seeks to detect intrusions or anomalies on CANs. Producing vehicular CAN data with a variety of intrusions is a difficult task for most researchers as it requires expensive assets and deep expertise. To illuminate this task, we introduce the first comprehensive guide to the existing open CAN intrusion detection system (IDS) datasets. We categorize attacks on CANs including fabrication (adding frames, e.g., flooding or targeting and ID), suspension (removing an ID’s frames), and masquerade attacks (spoofed frames sent in lieu of suspended ones). We provide a quality analysis of each dataset; an enumeration of each datasets’ attacks, benefits, and drawbacks; categorization as real vs. simulated CAN data and real vs. simulated attacks; whether the data is raw CAN data or signal-translated; number of vehicles/CANs; quantity in terms of time; and finally a suggested use case of each dataset. State-of-the-art public CAN IDS datasets are limited to real fabrication (simple message injection) attacks and simulated attacks often in synthetic data, lacking fidelity. In general, the physical effects of attacks on the vehicle are not verified in the available datasets. Only one dataset provides signal-translated data but is missing a corresponding “raw” binary version. This issue pigeon-holes CAN IDS research into testing on limited and often inappropriate data (usually with attacks that are too easily detectable to truly test the method). The scarcity of appropriate data has …
引用总数