作者
Emily Clements, Kerri Cahoy, Christian Haughwout, Hyosang Yoon, Kathleen Riesing, Maxim Khatsenko, Caleb Ziegler, Raichelle Aniceto
发表日期
2017
简介
CubeSat sensor performance continues to improve despite the limited size, weight, and power (SWaP) available on the platform. Missions are evolving into sensor constellations, demanding power-efficient high rate data downlink to compact and cost-effective ground terminals. SWaP constraints onboard nanosatellites limit the ability to accommodate large high gain antennas or higher power radio systems along with high duty cycle sensors. With the growing numbers of satellites in upcoming scientific, defense, and commercial constellations, it is difficult to place the high-gain burden solely on the ground stations, given the cost to acquire, maintain, and continuously operate facilities with dish diameters from 5 meters to 20 meters. In addition to the space and ground terminal hardware challenges, it is also increasingly difficult and sometimes not possible to obtain radio frequency licenses for CubeSats that require significant bandwidth. Free space optical communications (lasercom) can cost-effectively support data rates higher than 10 Mbps for similar space terminal SWaP as current RF solutions and with more compact ground terminals by leveraging components available for terrestrial fiber optic communication systems, and by using commercial amateur-astronomy telescopes as ground stations. We present results from the flight unit development, integration, and test of the Nanosatellite Optical Downlink Experiment (NODE) space terminal and ground station, scheduled for completion by summer of 2017. NODE’s objective is to demonstrate an end-to-end solution based on commercial telecommunications components and amateur telescope …
引用总数
20182019202020212022311
学术搜索中的文章