作者
Upama Kabir
发表日期
2017
机构
Concordia University
简介
Checkpoint and recovery cost imposed by checkpoint/restart (CP/R) is a crucial performance issue for high-performance computing (HPC) applications. In comparison, Algorithm-Based Fault Tolerance (ABFT) is a promising fault tolerance method with low recovery overhead, but it suffers from the inadequacy of universal applicability, i.e., tied to a specific application or algorithm. Till date, providing fault tolerance for matrix-based algorithms for linear systems has been the research focus of ABFT schemes. As a consequence, it necessitates a comprehensive exploration of ABFT research to widen its scope to other types of parallel algorithms and applications. In this thesis, we go beyond traditional ABFT and focus on other types of parallel applications not covered by traditional ABFT. In that regard, rather than an emphasis on a single application at a time, we consider the algorithmic and communication characteristics of a class of parallel applications to design efficient fault tolerance and recovery strategies for that class of parallel applications. The communication characteristics determine how to distributively replicate the fault recovery data (we call it the {\em critical data}) of a process, and the algorithmic characteristics determine what the application-specific data is to be replicated to minimize fault tolerance and recovery cost. Based on communication characteristics, parallel algorithms can be broadly classified as (i) embarrassingly parallel algorithms, where processes have infrequent or rare interactions, and (ii) communication-intensive parallel algorithms, where processes have significant interactions. In this thesis, through different case studies …