作者
Richard Hann, Adriana Enache, Mikkel Cornelius Nielsen, Bård Nagy Stovner, Jeroen van Beeck, Tor Arne Johansen, Kasper Trolle Borup
发表日期
2021/3/18
期刊
Aerospace
卷号
8
期号
3
页码范围
83
出版商
MDPI
简介
Atmospheric in-flight icing on unmanned aerial vehicles (UAVs) is a significant hazard. UAVs that are not equipped with ice protection systems are usually limited to operations within visual line of sight or to weather conditions without icing risk. As many military and commercial UAV missions require flights beyond visual line of sight and into adverse weather conditions, energy-efficient ice protection systems are required. In this experimental study, two electro-thermal ice protection systems for fixed-wing UAVs were tested. One system was operated in anti-icing and de-icing mode, and the other system was designed as a parting strip de-icing system. Experiments were conducted in an icing wind tunnel facility for varying icing conditions at low Reynolds numbers. A parametric study over the ice shedding time was used to identify the most energy-efficient operation mode. The results showed that longer intercycle durations led to higher efficiencies and that de-icing with a parting strip was superior compared to anti-icing and de-icing without a parting strip. These findings are relevant for the development of energy-efficient systems in the future.
引用总数
学术搜索中的文章