作者
Andreas Martin Lisewski, Joel P Quiros, Caroline L Ng, Anbu Karani Adikesavan, Kazutoyo Miura, Nagireddy Putluri, Richard T Eastman, Daniel Scanfeld, Sam J Regenbogen, Lindsey Altenhofen, Manuel Llinás, Arun Sreekumar, Carole Long, David A Fidock, Olivier Lichtarge
发表日期
2014/8/14
期刊
Cell
卷号
158
期号
4
页码范围
916-928
出版商
Elsevier
简介
A central problem in biology is to identify gene function. One approach is to infer function in large supergenomic networks of interactions and ancestral relationships among genes; however, their analysis can be computationally prohibitive. We show here that these biological networks are compressible. They can be shrunk dramatically by eliminating redundant evolutionary relationships, and this process is efficient because in these networks the number of compressible elements rises linearly rather than exponentially as in other complex networks. Compression enables global network analysis to computationally harness hundreds of interconnected genomes and to produce functional predictions. As a demonstration, we show that the essential, but functionally uncharacterized Plasmodium falciparum antigen EXP1 is a membrane glutathione S-transferase. EXP1 efficiently degrades cytotoxic hematin, is potently …
引用总数
20142015201620172018201920202021202220232024292292015221613115