作者
Emanuele Lattanzi, Matteo Donati, Valerio Freschi
发表日期
2022/3/29
期刊
Sensors
卷号
22
期号
7
页码范围
2637
出版商
MDPI
简介
The increasing diffusion of tiny wearable devices and, at the same time, the advent of machine learning techniques that can perform sophisticated inference, represent a valuable opportunity for the development of pervasive computing applications. Moreover, pushing inference on edge devices can in principle improve application responsiveness, reduce energy consumption and mitigate privacy and security issues. However, devices with small size and low-power consumption and factor form, like those dedicated to wearable platforms, pose strict computational, memory, and energy requirements which result in challenging issues to be addressed by designers. The main purpose of this study is to empirically explore this trade-off through the characterization of memory usage, energy consumption, and execution time needed by different types of neural networks (namely multilayer and convolutional neural networks) trained for human activity recognition on board of a typical low-power wearable device.Through extensive experimental results, obtained on a public human activity recognition dataset, we derive Pareto curves that demonstrate the possibility of achieving a 4× reduction in memory usage and a 36× reduction in energy consumption, at fixed accuracy levels, for a multilayer Perceptron network with respect to more sophisticated convolution network models.
引用总数