作者
Natalie Briggs, Brian Bersch, Yuanxi Wang, Jue Jiang, Roland J Koch, Nadire Nayir, Ke Wang, Marek Kolmer, Wonhee Ko, Ana De La Fuente Duran, Shruti Subramanian, Chengye Dong, Jeffrey Shallenberger, Mingming Fu, Qiang Zou, Ya-Wen Chuang, Zheng Gai, An-Ping Li, Aaron Bostwick, Chris Jozwiak, Cui-Zu Chang, Eli Rotenberg, Jun Zhu, Adri CT van Duin, Vincent Crespi, Joshua A Robinson
发表日期
2020/6
期刊
Nature materials
卷号
19
期号
6
页码范围
637-643
出版商
Nature Publishing Group UK
简介
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena …
引用总数
学术搜索中的文章