作者
David G Ousterout, Ami M Kabadi, Pratiksha I Thakore, William H Majoros, Timothy E Reddy, Charles A Gersbach
发表日期
2015/2/18
期刊
Nature communications
卷号
6
期号
1
页码范围
6244
出版商
Nature Publishing Group UK
简介
The CRISPR/Cas9 genome-editing platform is a promising technology to correct the genetic basis of hereditary diseases. The versatility, efficiency and multiplexing capabilities of the CRISPR/Cas9 system enable a variety of otherwise challenging gene correction strategies. Here, we use the CRISPR/Cas9 system to restore the expression of the dystrophin gene in cells carrying dystrophin mutations that cause Duchenne muscular dystrophy (DMD). We design single or multiplexed sgRNAs to restore the dystrophin reading frame by targeting the mutational hotspot at exons 45–55 and introducing shifts within exons or deleting one or more exons. Following gene editing in DMD patient myoblasts, dystrophin expression is restored in vitro. Human dystrophin is also detected in vivo after transplantation of genetically corrected patient cells into immunodeficient mice. Importantly, the unique multiplex gene-editing …
引用总数
201520162017201820192020202120222023202429867384544461414612