作者
Benjamin J Puttnam, Ruben S Luís, José Manuel Delgado Mendinueta, Jun Sakaguchi, Werner Klaus, Yukiyoshi Kamio, Moriya Nakamura, Naoya Wada, Yoshinari Awaji, Atsushi Kanno, Tetsuya Kawanishi, Tetsuya Miyazaki
发表日期
2014/5/6
来源
Photonics
卷号
1
期号
2
页码范围
110-130
出版商
MDPI
简介
We review work on self-homodyne detection (SHD) for optical communication systems. SHD uses a transmitted pilot-tone (PT), originating from the transmitter laser, to exploit phase noise cancellation at a coherent receiver and to enable transmitter linewidth tolerance and potential energy savings. We give an overview of SHD performance, outlining the key contributors to the optical signal-to-noise ratio penalty compared to equivalent intradyne systems, and summarize the advantages, differences and similarities between schemes using polarization-division multiplexed PTs (PDM-SHD) and those using space-division multiplexed PTs (SDM-SHD). For PDM-SHD, we review the extensive work on the transmission of advanced modulation formats and techniques to minimize the trade-off with spectral efficiency, as well as recent work on digital SHD, where the SHD receiver is combined with an polarization-diversity ID front-end receiver to provide both polarization and modulation format alignment. We then focus on SDM-SHD systems, describing experimental results using multi-core fibers (MCFs) with up to 19 cores, including high capacity transmission with broad-linewidth lasers and experiments incorporating SDM-SHD in networking. Additionally, we discuss the requirement for polarization tracking of the PTs at the receiver and path length alignment and review some variants of SHD before outlining the future challenges of self-homodyne optical transmission and gaps in current knowledge.
引用总数
2014201520162017201820192020202120222023202426487528771
学术搜索中的文章