作者
Dan Xia, Steve Lianoglou, Thomas Sandmann, Meredith Calvert, Jung H Suh, Elliot Thomsen, Jason Dugas, Michelle E Pizzo, Sarah L DeVos, Timothy K Earr, Chia-Ching Lin, Sonnet Davis, Connie Ha, Amy Wing-Sze Leung, Hoang Nguyen, Roni Chau, Ernie Yulyaningsih, Isabel Lopez, Hilda Solanoy, Shababa T Masoud, Chun-chi Liang, Karin Lin, Giuseppe Astarita, Nathalie Khoury, Joy Yu Zuchero, Robert G Thorne, Kevin Shen, Stephanie Miller, Jorge J Palop, Dylan Garceau, Michael Sasner, Jennifer D Whitesell, Julie A Harris, Selina Hummel, Johannes Gnörich, Karin Wind, Lea Kunze, Artem Zatcepin, Matthias Brendel, Michael Willem, Christian Haass, Daniel Barnett, Till S Zimmer, Anna G Orr, Kimberly Scearce-Levie, Joseph W Lewcock, Gilbert Di Paolo, Pascal E Sanchez
发表日期
2022/6/11
期刊
Molecular neurodegeneration
卷号
17
期号
1
页码范围
41
出版商
BioMed Central
简介
Background
Genetic mutations underlying familial Alzheimer’s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain.
Methods
We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding …
引用总数