作者
Clemens Wolfgang Satzger
发表日期
2017
机构
Friedrich-Alexander Universität Erlangen-Nürnberg
简介
Besides the environmental benefits, electric powertrains offer the potential to improve braking performance by exploiting the fast response of the electric motor. A particularly challenging control task for such systems is braking at the limit of the tire adhesion, which must optimally handle the actuation redundancy of the hybrid braking system in addition to coping with the high system uncertainties and the time varying dynamics of the tire-road contact. The proposed and experimentally validated control framework seeks to optimize the tradeoff between maximizing energy recuperation and optimizing braking dynamics, in the form of wheel torque tracking during normal braking and wheel slip tracking when braking at the limit of the tire adhesion. Conventional solutions such as daisy chain and cascaded control structures provide only suboptimal results due to under-utilization of the actuation dynamics. Therefore, this work proposes a centralized (i.e., ’single-loop’) brake control strategy, where the wheel-slip regulation, torque tracking and torque blending are jointly addressed via the model predictive control framework. Model predictive control is able to account for the effects of system constraints using online optimization, which enables the actuation redundancy of the hybrid brake system to be optimally handled. However, conventional model predictive control approaches for uncertain linear parameter varying systems, such as wheel slip control under time-varying velocity, are either too computationally intensive or do not offer stability guarantees. Spurred by these shortcomings, this work extends existing robust model predictive control design …
引用总数