作者
Manu Setty, Vaidotas Kiseliovas, Jacob Levine, Adam Gayoso, Linas Mazutis, Dana Pe’Er
发表日期
2019/4
期刊
Nature biotechnology
卷号
37
期号
4
页码范围
451-460
出版商
Nature Publishing Group US
简介
Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and …
学术搜索中的文章
M Setty, V Kiseliovas, J Levine, A Gayoso, L Mazutis… - Nature biotechnology, 2019
M Setty, V Kiseliovas, J Levine, A Gayoso, L Mazutis… - BioRxiv, 2018
M Setty, V Kiseliovas, J Levine, A Gayoso, L Mazutis… - Nature Biotechnology, 2019