作者
Josip Lorincz, Zvonimir Klarin
发表日期
2021
简介
At the transport layer of the Open System Interconnection (OSI) model, the transmission control protocol (TCP) is a major protocol used in today’s communication over the Internet. The TCP is designed to provide a reliable end-to-end connection over unreliable links. Besides affecting the physical and media access control (MAC) layers of the OSI model, ensuring the high data rates in environments characterised with fluctuations in the quality of the wired links or wireless channels deteriorate the performance of the transport layer of the network. Ensuring reliable end-to-end connections over versatile wired and wireless networks which become complex and heterogeneous, presents a demanding challenge in terms of its practical implementation. This challenge arose during the last decades as the subject of the researchers’ interest. One of the mechanisms that plays a critical role in TCP performance is the congestion control (CC) mechanism.
One of the main purposes of the CC mechanism is to probe the network for available capacity by dynamically increasing or decreasing the amount of data (also known as window size) that can be sent over a communication link. This approach enables avoiding the congestion of the network that can be caused by a large burst of data during transmission. Node or link congestion in wired networks and blockage and beam misalignment in wireless networks can seriously affect the TCP CC mechanism. This further results in poor end-to-end transmission performance. Conventional TCP CC algorithms are not able to differentiate between the potential causes of packet loss. They can occur due to a lack of wired …
学术搜索中的文章