作者
Xuan-Toan Dang, Oh-Soon Shin
发表日期
2024/5/8
期刊
Electronics
卷号
13
期号
10
页码范围
1827
出版商
MDPI
简介
Federated learning (FL) is considered a promising machine learning technique that has attracted increasing attention in recent years. Instead of centralizing data in one location for training a global model, FL allows the model training to occur on user devices, such as smartphones, IoT devices, or local servers, thereby respecting data privacy and security. However, implementing FL in wireless communication faces a significant challenge due to the inherent unpredictability and constant fluctuations in channel characteristics. A key challenge in implementing FL over wireless communication lies in optimizing energy efficiency. This holds significant importance, especially considering user devices with restricted power resources. On the other hand, unmanned aerial vehicle (UAV) technologies present a cost-effective solution owing to flexibility and mobility compared to terrestrial base stations. Consequently, the deployment of UAV communication in FL is viewed as a potential approach to deal with the energy efficiency challenge. In this paper, we address the problem of minimizing the total energy consumption of all user equipment (UE) during the training phase of FL over a UAV communication network. Our proposed system facilitates UE to operate concurrently at the same time and frequency, thereby improving bandwidth utilization efficiently. In this paper, we address the problem of minimizing the total energy consumption during the training phase of FL over a UAV communication network. To deal with the proposed nonconvex problem, we propose a novel alternating optimization approach by dividing the problem into two suboptimal problems …