作者
Sofia Sheikh, Meelad Ranaiefar, Pejman Honarmandi, Brent Vela, Peter Morcos, David Shoukr, Raymundo Arroyave, Ibrahim Karaman, Alaa Elwany
发表日期
2023/4/8
期刊
arXiv preprint arXiv:2304.04113
简介
In additive manufacturing, the optimal processing conditions need to be determined to fabricate porosity-free parts. For this purpose, the design space for an arbitrary alloy needs to be scoped and analyzed to identify the areas of defects for different laser power-scan speed combinations and can be visualized using a printability map. Constructing printability maps is typically a costly process due to the involvement of experiments, which restricts their application in high-throughput product design. To reduce the cost and effort of constructing printability maps, a fully computational framework is introduced in this work. The framework combines CALPHAD models and a reduced-order model to predict material properties. THen, an analytical thermal model, known as the Eagar-Tsai model, utilizes some of these materials' properties to calculate the melt pool geometry during the AM processes. In the end, printability maps are constructed using material properties, melt pool dimensions, and commonly used criteria for lack of fusion, balling, and keyholing defects. To validate the framework and its general application to laser powder-bed fusion alloys, five common additive manufacturing alloys are analyzed. Furthermore, NiTi-based alloys at three different compositions are evaluated to show the further extension of the framework to alloy systems at different compositions. The defect regions in these printability maps are validated with corresponding experimental observations to compare and benchmark the defect criteria and find the optimal criterion set with the maximum accuracy for each unique material composition. Furthermore, printability maps for NiTi …
引用总数
学术搜索中的文章