作者
Guangyu Sun, Matias Mendieta, Taojiannan Yang, Chen Chen
发表日期
2022/9/29
简介
Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices. In the typical FL paradigm (e.g., FedAvg), model weights are sent to and from the server each round to participating clients. However, this can quickly put a massive communication burden on the system, especially if more capable models beyond very small MLPs are employed. Recently, the use of pre-trained models has been shown effective in federated learning optimization and improving convergence. This opens the door for new research questions. Can we adjust the weight-sharing paradigm in federated learning, leveraging strong and readily-available pre-trained models, to significantly reduce the communication burden while simultaneously achieving excellent performance? To this end, we investigate the use of parameter-efficient fine-tuning in federated learning. Specifically, we systemically evaluate the performance of several parameter-efficient fine-tuning methods across a variety of client stability, data distribution, and differential privacy settings. By only locally tuning and globally sharing a small portion of the model weights, significant reductions in the total communication overhead can be achieved while maintaining competitive performance in a wide range of federated learning scenarios, providing insight into a new paradigm for practical and effective federated systems.
引用总数