作者
Konrad Rieck, Pavel Laskov
发表日期
2006
研讨会论文
Detection of Intrusions and Malware & Vulnerability Assessment: Third International Conference, DIMVA 2006, Berlin, Germany, July 13-14, 2006. Proceedings 3
页码范围
74-90
出版商
Springer Berlin Heidelberg
简介
We propose a method for network intrusion detection based on language models such as n-grams and words. Our method proceeds by extracting these models from TCP connection payloads and applying unsupervised anomaly detection. The essential part of our approach is linear-time computation of similarity measures between language models stored in trie data structures.
Results of our experiments conducted on two datasets of network traffic demonstrate the importance of higher-order n-grams for detection of unknown network attacks. Our method is also suitable for language models based on words, which are more amenable in practical security applications. An implementation of our system achieved detection accuracy of over 80% with no false positives on instances of recent attacks in HTTP, FTP and SMTP traffic.
引用总数
学术搜索中的文章
K Rieck, P Laskov - Detection of Intrusions and Malware & Vulnerability …, 2006