作者
Haoren Wang, Chaoyi Zhu, Kenneth S Vecchio
发表日期
2020/8/1
期刊
Acta Materialia
卷号
194
页码范围
496-515
出版商
Pergamon
简介
FeAl-based Metallic-Intermetallic Laminate (MIL) composites exhibit enhanced strength and ductility compared to previously studied MIL composites. The deformation and fracture evolution of the FeAl-based MIL composites are investigated here via incremental compression testing. Microstructure assessment via electron backscatter diffraction suggests that deformation proceeds in a fairly homogeneous manner across gradients in the microstructure. Eventual failure is mainly induced by normal stresses, whereas other MIL composites typically fail by shear induced localizations. Geometrically necessary dislocation analysis indicates the FeAl regions deform in similar manners for the three MIL composites (Fe-FeAl-MIL, 430SS-FeAl-MIL, and 304SS-FeAl-MIL), and each fails in a similar mode. While the FeAl phase is the majority constituent of the composites, the mechanical properties are significantly influenced by …
引用总数
2020202120222023202415785