作者
Pengbo Yu, Yidan Li, Bo Xu, Jing Wei, Shen Li, Jianhua Dong, Jianhui Qu, Jing Xu, Zheng Huang, Chaofeng Ma, Jing Yang, Guogang Zhang, Bin Chen, Shanqian Huang, Chunming Shi, Hongwei Gao, Feng Liu, Huaiyu Tian, Nils Stenseth, Bing Xu, Jingjun Wang
发表日期
2017/10/22
期刊
Remote Sensing
卷号
9
期号
10
页码范围
1076
出版商
Multidisciplinary Digital Publishing Institute
简介
Striped field mice (Apodemus agrarius) are the main host for the Hantaan virus (HTNV), the cause of hemorrhagic fever with renal syndrome (HFRS) in central China. It has been shown that host population density is associated with pathogen dynamics and disease risk. Thus, a higher population density of A. agrarius in an area might indicate a higher risk for an HFRS outbreak. Here, we surveyed the A. agrarius population density between 2005 and 2012 on the Weihe Plain, Shaanxi Province, China, and used this monitoring data to examine the relationships between the dynamics of A. agrarius populations and environmental conditions of crop-land, represented by remote sensing based indicators. These included the normalized difference vegetation index, leaf area index, fraction of photosynthetically active radiation absorbed by vegetation, net photosynthesis (PsnNet), gross primary productivity, and land surface temperature. Structural equation modeling (SEM) was applied to detect the possible causal relationship between PsnNet, A. agrarius population density and HFRS risk. The results showed that A. agrarius was the most frequently captured species with a capture rate of 0.9 individuals per hundred trap-nights, during 96 months of trapping in the study area. The risk of HFRS was highly associated with the abundance of A. agrarius, with a 1–5-month lag. The breeding season of A. agrarius was also found to coincide with agricultural activity and seasons with high PsnNet. The SEM indicated that PsnNet had an indirect positive effect on HFRS incidence via rodents. In conclusion, the remote sensing-based environmental indicator, PsnNet …
引用总数
20172018201920202021202213112