作者
Jason SL Yu, Clara Correia-Melo, Francisco Zorrilla, Lucia Herrera-Dominguez, Mary Y Wu, Johannes Hartl, Kate Campbell, Sonja Blasche, Marco Kreidl, Anna-Sophia Egger, Christoph B Messner, Vadim Demichev, Anja Freiwald, Michael Mülleder, Michael Howell, Judith Berman, Kiran R Patil, Mohammad Tauqeer Alam, Markus Ralser
发表日期
2022/4
期刊
Nature microbiology
卷号
7
期号
4
页码范围
542-555
出版商
Nature Publishing Group UK
简介
Microbial communities are composed of cells of varying metabolic capacity, and regularly include auxotrophs that lack essential metabolic pathways. Through analysis of auxotrophs for amino acid biosynthesis pathways in microbiome data derived from >12,000 natural microbial communities obtained as part of the Earth Microbiome Project (EMP), and study of auxotrophic–prototrophic interactions in self-establishing metabolically cooperating yeast communities (SeMeCos), we reveal a metabolically imprinted mechanism that links the presence of auxotrophs to an increase in metabolic interactions and gains in antimicrobial drug tolerance. As a consequence of the metabolic adaptations necessary to uptake specific metabolites, auxotrophs obtain altered metabolic flux distributions, export more metabolites and, in this way, enrich community environments in metabolites. Moreover, increased efflux activities reduce …
引用总数