作者
Maria Apostolaki, Gian Marti, Jan Müller, Laurent Vanbever
发表日期
2019/2
研讨会论文
NDSS Symposium 2019
简介
Routing attacks remain practically effective in the Internet today as existing countermeasures either fail to provide protection guarantees or are not easily deployable. Blockchain systems are particularly vulnerable to such attacks as they rely on Internet-wide communication to reach consensus. In particular, Bitcoin -the most widely-used cryptocurrency- can be split in half by any AS-level adversary using BGP hijacking. In this paper, we present SABRE, a secure and scalable Bitcoin relay network which relays blocks worldwide through a set of connections that are resilient to routing attacks. SABRE runs alongside the existing peer-to-peer network and is easily deployable. As a critical system, SABRE design is highly resilient and can efficiently handle high bandwidth loads, including Denial of Service attacks. We built SABRE around two key technical insights. First, we leverage fundamental properties of inter-domain routing (BGP) policies to host relay nodes: (i) in locations that are inherently protected against routing attacks; and (ii) on paths that are economically preferred by the majority of Bitcoin clients. These properties are generic and can be used to protect other Blockchain-based systems. Second, we leverage the fact that relaying blocks is communication-heavy, not computation-heavy. This enables us to offload most of the relay operations to programmable network hardware (using the P4 programming language). Thanks to this hardware/software co-design, SABRE nodes operate seamlessly under high load while mitigating the effects of malicious clients. We present a complete implementation of SABRE together with an extensive …
引用总数
2018201920202021202220232024151722141111
学术搜索中的文章
M Apostolaki, G Marti, J Müller, L Vanbever - arXiv preprint arXiv:1808.06254, 2018