作者
Jonathan S Steckel, E Josse, AG Pattantyus-Abraham, M Bidaud, B Mortini, H Bilgen, O Arnaud, S Allegret-Maret, F Saguin, L Mazet, S Lhostis, T Berger, K Haxaire, LL Chapelon, L Parmigiani, P Gouraud, M Brihoum, P Bar, M Guillermet, S Favreau, R Duru, J Fantuz, S Ricq, D Ney, I Hammad, D Roy, A Arnaud, B Vianne, G Nayak, N Virollet, V Farys, P Malinge, A Tournier, F Lalanne, A Crocherie, J Galvier, S Rabary, O Noblanc, H Wehbe-Alause, S Acharya, A Singh, J Meitzner, D Aher, H Yang, J Romero, B Chen, C Hsu, KC Cheng, Y Chang, M Sarmiento, C Grange, E Mazaleyrat, K Rochereau
发表日期
2021/12/11
研讨会论文
2021 IEEE International Electron Devices Meeting (IEDM)
页码范围
23.4. 1-23.4. 4
出版商
IEEE
简介
We have developed a pixel pitch global shutter sensor optimized for imaging in the near infrared (NIR) and shortwave infrared (SWIR) regions of the light spectrum. This breakthrough was made possible through the use of our colloidal Quantum Dot (QD) thin film technology, which we have named Quantum Film (QF). We have scaled up this new platform technology to our 300mm manufacturing toolset. The challenges associated with the introduction of solution-processed, colloidally grown lead sulfide (PbS) QDs in an industrial 300mm fab environment were successfully overcome. The QF photodiodes, leveraging either NIR or SWIR sensitive QDs, were optimized for high quantum efficiency (QE), low dark current and immunity to operating stress. Global shutter pixel arrays, with pixel pitch of and exhibit unprecedented QE of >50% and MTF @ Nyquist/2 of 0.75 and 0.6, respectively. The …
引用总数
学术搜索中的文章
JS Steckel, E Josse, AG Pattantyus-Abraham… - 2021 IEEE International Electron Devices Meeting …, 2021