关注
Lijun Lyu
Lijun Lyu
TU Delft, The Netherlands
在 tudelft.nl 的电子邮件经过验证
标题
引用次数
引用次数
年份
Explainable information retrieval: A survey
A Anand, L Lyu, M Idahl, Y Wang, J Wallat, Z Zhang
arXiv preprint arXiv:2211.02405, 2022
242022
Neural OCR post-hoc correction of historical corpora
L Lyu, M Koutraki, M Krickl, B Fetahu
Transactions of the Association for Computational Linguistics 9, 479-493, 2021
222021
BERT rankers are brittle: a study using adversarial document perturbations
Y Wang, L Lyu, A Anand
Proceedings of the 2022 ACM SIGIR International Conference on Theory of …, 2022
182022
Towards benchmarking the utility of explanations for model debugging
M Idahl, L Lyu, U Gadiraju, A Anand
arXiv preprint arXiv:2105.04505, 2021
162021
Improving routing performance via dynamic programming in large-scale data centers
J Xie, L Lyu, Y Deng, LT Yang
IEEE Internet of Things Journal 2 (4), 321-328, 2014
142014
Listwise explanations for ranking models using multiple explainers
L Lyu, A Anand
European Conference on Information Retrieval, 653-668, 2023
132023
Real-time event-based news suggestion for Wikipedia pages from news streams
L Lyu, B Fetahu
Companion Proceedings of the The Web Conference 2018, 1793-1799, 2018
62018
Athena: A fault-tolerant, efficient and applicable routing mechanism for data centers
L Lyu, J Xie, Y Deng, Y Zhou
Algorithms and Architectures for Parallel Processing: 14th International …, 2014
12014
Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank?
L Lyu, N Roy, H Oosterhuis, A Anand
European Conference on Information Retrieval, 384-402, 2024
2024
TRAVELOGUES: FREMDWAHRNEHMUNGEN IN REISEBERICHTEN 1500–1876
D Gruber, M Krickl, L Lyu, J Rörden, A Strohmeyer
Eigenverlag/Self-published, 2020
2020
Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions
H Oosterhuis, L Lyu, A Anand
Forty-first International Conference on Machine Learning, 0
系统目前无法执行此操作,请稍后再试。
文章 1–11