Micropolar fluids: theory and applications G Lukaszewicz Springer Science & Business Media, 2012 | 1539 | 2012 |
Pullback attractors for asymptotically compact non-autonomous dynamical systems T Caraballo, G Łukaszewicz, J Real Nonlinear Analysis: Theory, Methods & Applications 64 (3), 484-498, 2006 | 479 | 2006 |
Pullback attractors for non-autonomous 2D-Navier–Stokes equations in some unbounded domains T Caraballo, G Łukaszewicz, J Real Comptes rendus. Mathématique 342 (4), 263-268, 2006 | 156 | 2006 |
Navier–stokes equations G Łukaszewicz, P Kalita Advances in Mechanics and Mathematics 34, 2016 | 108 | 2016 |
On non‐stationary flows of incompressible asymmetric fluids G Łukaszewicz Mathematical methods in the applied sciences 13 (3), 219-232, 1990 | 108 | 1990 |
Long time behavior of 2D micropolar fluid flows G Łukaszewicz Mathematical and Computer Modelling 34 (5-6), 487-509, 2001 | 100 | 2001 |
Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains G Łukaszewicz, W Sadowski Zeitschrift für angewandte Mathematik und Physik ZAMP 55, 247-257, 2004 | 80 | 2004 |
Invariant measures for non-autonomous dissipative dynamical systems G Lukaszewicz, JC Robinson DYNAMICAL SYSTEMS 34 (10), 2014 | 74 | 2014 |
On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids G Lukaszewicz Uniwersytet Warszawski. Instytut Matematyki, 1988 | 74 | 1988 |
Random attractors for stochastic 2D-Navier–Stokes equations in some unbounded domains Z Brzeźniak, T Caraballo, JA Langa, Y Li, G Łukaszewicz, J Real Journal of Differential Equations 255 (11), 3897-3919, 2013 | 67 | 2013 |
On pullback attractors in Lp for nonautonomous reaction–diffusion equations G Łukaszewicz Nonlinear Analysis: Theory, Methods & Applications 73 (2), 350-357, 2010 | 62 | 2010 |
Invariant measures for dissipative systems and generalised Banach limits G Łukaszewicz, J Real, JC Robinson Journal of Dynamics and Differential Equations 23, 225-250, 2011 | 59 | 2011 |
Pullback attractors and statistical solutions for 2-D Navier-Stokes equations G Lukaszewicz Discrete Cont. Dyn. Syst.-B 9, 643-659, 2008 | 54 | 2008 |
Finite fractal dimension of pullback attractors for non-autonomous 2D Navier–Stokes equations in some unbounded domains JA Langa, G Łukaszewicz, J Real Nonlinear Analysis: Theory, Methods & Applications 66 (3), 735-749, 2007 | 54 | 2007 |
Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations C Zhao, T Caraballo, G Łukaszewicz Journal of Differential Equations 281, 1-32, 2021 | 46 | 2021 |
On a lubrication problem with Fourier and Tresca boundary conditions M Boukrouche, G Łukaszewicz Mathematical Models and Methods in Applied Sciences 14 (06), 913-941, 2004 | 44 | 2004 |
Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations C Zhao, G Xue, G Łukaszewicz Discrete Cont. Dyn. Syst.-B 23, 4021-4044, 2018 | 43 | 2018 |
Micropolar fluids. Modeling and Simulation in Science, Engineering and Technology G Lukaszewicz Birkhäuser Boston, Inc., Boston, MA, 1999 | 37 | 1999 |
Asymptotic behavior of micropolar fluid flows G Łukaszewicz International Journal of Engineering Science 41 (3-5), 259-269, 2003 | 36 | 2003 |
Global attractors for multivalued semiflows with weak continuity properties P Kalita, G Łukaszewicz Nonlinear Analysis: Theory, Methods & Applications 101, 124-143, 2014 | 34 | 2014 |