Voronovskaja type approximation theorem for q-Szász-beta operators İ Yüksel, Ü Dinlemez Applied Mathematics and Computation 235, 555-559, 2014 | 10 | 2014 |
A NOTE ON THE APPROXIMATION BY THE -HYBRID SUMMATION INTEGRAL TYPE OPERATORS Ü Dinlemez, İ Yüksel, B Altın | 9 | 2014 |
Approximation Properties of Generalized λ‐Bernstein–Stancu‐Type Operators QB Cai, G Torun, Ü Dinlemez Kantar Journal of Mathematics 2021 (1), 5590439, 2021 | 7 | 2021 |
Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators Q Cai, ÜD Kantar, B Cekim Applied Mathematics-A Journal of Chinese Universities 35, 468-478, 2020 | 6 | 2020 |
A voronovskaja-type theorem for a kind of durrmeyer-bernstein-stancu operators UD Kantar, G Ergelen Gazi University Journal of Science 32 (4), 1228-1236, 2019 | 5 | 2019 |
Dunkl generalization of Szász Beta‐type operators B Çekim, Ü Dinlemez Kantar, İ Yüksel Mathematical Methods in the Applied Sciences 40 (18), 7697-7704, 2017 | 5 | 2017 |
On the (p, q)-Stancu generalization of a Genuine Baskakov-Durrmeyer type operators ÃD Kantar, B Altın International Journal of Analysis and Applications 15 (2), 138-145, 2017 | 5 | 2017 |
Convergence of the q-Stancu-Szász-Beta type operators Ü Dinlemez Journal of Inequalities and Applications 2014, 1-8, 2014 | 4 | 2014 |
Structural Stability for a Class of Nonlinear Wave Equations Ü Dinlemez Gazi University Journal of Science 22 (2), 83-87, 2009 | 4 | 2009 |
Investigating (p, q)-hybrid Durrmeyer-type operators in terms of their approximation properties ÜD Kantar, İ Yüksel Gazi University Journal of Science Part A: Engineering and Innovation, 1-11, 2022 | 3 | 2022 |
Approximation Properties of Durrmeyer Type of (p, q)‐Bleimann, Butzer, and Hahn Operators QB Cai, İ Yüksel, Ü Dinlemez Kantar, B Çekim Journal of Function Spaces 2019 (1), 7047656, 2019 | 3 | 2019 |
Voronovskaja Type Approximation Theorem For 𝒒-Szász-Beta-Stancu Type Operators Ü Dinlemez, İ Yüksel Gazi University Journal of Science 29 (1), 115-122, 2016 | 3 | 2016 |
Weighted Approximation by the 𝒒− Szász− Schurer− Beta Type Operators İ Yüksel, Ü Dinlemez Gazi University Journal of Science 28 (2), 231-238, 2015 | 3 | 2015 |
Properties of the far field operator in the inverse conductive scattering problem G Torun, ÜD Ateş Applied mathematics and computation 175 (2), 1503-1514, 2006 | 3 | 2006 |
Approximation by q-Baskakov–Durrmeyer Type Operators of Two Variables I Yüksel, Ü Dinlemez, B Altın Computational Analysis: AMAT, Ankara, May 2015 Selected Contributions, 195-209, 2016 | 2 | 2016 |
On approximation of Baskakov-Durrmeyer type operators of two variables İ Yüksel, Ü Dinlemez Kantar, B Altın Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys 78 (1), 123-134, 2016 | 2 | 2016 |
Global and Blow‐Up Solutions for Nonlinear Hyperbolic Equations with Initial‐Boundary Conditions Ü Dinlemez, E Aktaş International Journal of Differential Equations 2014 (1), 724837, 2014 | 2 | 2014 |
Global existence, uniqueness of weak solutions and determining functionals for nonlinear wave equations U Dinlemez Advances in Pure Mathematics 3 (5), 451-457, 2013 | 2 | 2013 |
Investigation of the Asymptotic Behavior of Generalized Baskakov-Durrmeyer-Stancu Type Operators G Torun, MM Boyraz, ÜD Kantar Cumhuriyet Science Journal 43 (1), 98-104, 2022 | 1 | 2022 |
Eigenvalues of the far field operator for time harmonic acoustic waves by an inhomogeneous medium and inverse scattering theory ÜD Ateş, İE Anar Applied mathematics and computation 158 (3), 835-851, 2004 | 1 | 2004 |