关注
florence clerc
florence clerc
在 mail.mcgill.ca 的电子邮件经过验证
标题
引用次数
引用次数
年份
Pointless learning
F Clerc, V Danos, F Dahlqvist, I Garnier
Foundations of Software Science and Computation Structures: 20th …, 2017
432017
Expressiveness of probabilistic modal logics: A gradual approach
F Clerc, N Fijalkow, B Klin, P Panangaden
Information and Computation 267, 145-163, 2019
112019
Presenting a category modulo a rewriting system
F Clerc, S Mimram
26th International Conference on Rewriting Techniques and Applications (RTA …, 2015
112015
Bicategories of Markov processes
F Clerc, H Humphrey, P Panangaden
Models, Algorithms, Logics and Tools: Essays Dedicated to Kim Guldstrand …, 2017
102017
PAC-Bayesian generalization bounds for adversarial generative models
SD Mbacke, F Clerc, P Germain
International Conference on Machine Learning, 24271-24290, 2023
82023
Statistical guarantees for variational autoencoders using pac-bayesian theory
SD Mbacke, F Clerc, P Germain
Advances in Neural Information Processing Systems 36, 2024
52024
Bisimulation for feller-dynkin processes
L Chen, F Clerc, P Panangaden
Electronic Notes in Theoretical Computer Science 347, 45-63, 2019
52019
Towards a classification of behavioural equivalences in continuous-time Markov processes
L Chen, F Clerc, P Panangaden
Electronic Notes in Theoretical Computer Science 352, 53-77, 2020
32020
Behavioural equivalences for continuous-time Markov processes
L Chen, F Clerc, P Panangaden
Mathematical Structures in Computer Science 33 (4-5), 222-258, 2023
12023
Bisimulation and behavioural equivalences for continuous-time Markov processes
F Clerc
McGill University (Canada), 2021
12021
Behavioural pseudometrics for continuous-time diffusions
L Chen, F Clerc, P Panangaden
arXiv preprint arXiv:2312.16729, 2023
2023
Statistical Guarantees for Variational Autoencoders using PAC-Bayesian Theory
S Diarra Mbacke, F Clerc, P Germain
arXiv e-prints, arXiv: 2310.04935, 2023
2023
Sample Boosting Algorithm (SamBA)-An interpretable greedy ensemble classifier based on local expertise for fat data
B Bauvin, C Capponi, F Clerc, P Germain, S Koço, J Corbeil
Uncertainty in Artificial Intelligence, 130-140, 2023
2023
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
S Diarra Mbacke, F Clerc, P Germain
arXiv e-prints, arXiv: 2302.08942, 2023
2023
Semantics for probabilistic programming
F Clerc, V Danos, F Dahlqvist, I Garnier
2016
COMP 599: Constructing a metric between labelled Markov processes
F Clerc
2016
Sample Boosting Algorithm (SamBA)-An Interpretable Greedy Ensemble Classifier Based On Local Expertise For Fat Data (Supplementary Material)
B Bauvin, C Capponi, F Clerc, P Germain, S Koço, J Corbeil
Pointless learning (draft)
F Clerc, V Danos, F Dahlqvist, I Garnier
Towards a categorical understanding of variety theorems for quantitative algebras
W Boshuck, F Clerc, P Panangaden
CALCO EARLY IDEAS 2017, 2, 0
系统目前无法执行此操作,请稍后再试。
文章 1–19