关注
Kiran Koshy Thekumparampil
Kiran Koshy Thekumparampil
其他姓名Kiran Thekumparampil, Kiran K. Thekumparampil
在 illinois.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Attention-based graph neural network for semi-supervised learning
KK Thekumparampil, C Wang, S Oh, LJ Li
arXiv preprint arXiv:1803.03735, 2018
4102018
Robustness of conditional gans to noisy labels
KK Thekumparampil, A Khetan, Z Lin, S Oh
Advances in neural information processing systems 31, 2018
2672018
Efficient algorithms for smooth minimax optimization
KK Thekumparampil, P Jain, P Netrapalli, S Oh
Advances in Neural Information Processing Systems 32, 2019
1982019
Infogan-cr and modelcentrality: Self-supervised model training and selection for disentangling gans
Z Lin, K Thekumparampil, G Fanti, S Oh
international conference on machine learning, 6127-6139, 2020
124*2020
Learning from comparisons and choices
S Negahban, S Oh, KK Thekumparampil, J Xu
Journal of Machine Learning Research 19 (40), 1-95, 2018
472018
Collaboratively learning preferences from ordinal data
S Oh, KK Thekumparampil, J Xu
Advances in Neural Information Processing Systems 28, 2015
352015
Lifted primal-dual method for bilinearly coupled smooth minimax optimization
KK Thekumparampil, N He, S Oh
International Conference on Artificial Intelligence and Statistics, 4281-4308, 2022
272022
Projection efficient subgradient method and optimal nonsmooth frank-wolfe method
KK Thekumparampil, P Jain, P Netrapalli, S Oh
Advances in Neural Information Processing Systems 33, 12211-12224, 2020
262020
Efficient algorithms for federated saddle point optimization
C Hou, KK Thekumparampil, G Fanti, S Oh
arXiv preprint arXiv:2102.06333, 2021
222021
Combinatorial resource allocation using submodularity of waterfilling
K Thekumparampil, A Thangaraj, R Vaze
IEEE Transactions on Wireless Communications 15 (1), 206-216, 2015
152015
Sample efficient linear meta-learning by alternating minimization
KK Thekumparampil, P Jain, P Netrapalli, S Oh
arXiv preprint arXiv:2105.08306, 2021
132021
FeDChain: Chained algorithms for near-optimal communication cost in federated learning
C Hou, KK Thekumparampil, G Fanti, S Oh
arXiv preprint arXiv:2108.06869, 2021
122021
Bring your own algorithm for optimal differentially private stochastic minimax optimization
L Zhang, KK Thekumparampil, S Oh, N He
Advances in Neural Information Processing Systems 35, 35174-35187, 2022
112022
Statistically and computationally efficient linear meta-representation learning
KK Thekumparampil, P Jain, P Netrapalli, S Oh
Advances in Neural Information Processing Systems 34, 18487-18500, 2021
102021
DPZero: dimension-independent and differentially private zeroth-order optimization
L Zhang, KK Thekumparampil, S Oh, N He
arXiv preprint arXiv:2310.09639, 2023
52023
Reducing the communication cost of federated learning through multistage optimization
C Hou, KK Thekumparampil, G Fanti, S Oh
arXiv preprint arXiv:2108.06869, 2021
52021
Robust conditional gans under missing or uncertain labels
KK Thekumparampil, S Oh, A Khetan
arXiv preprint arXiv:1906.03579, 2019
52019
Multistage stepsize schedule in federated learning: Bridging theory and practice
GFC Hou, K Thekumparampil, S Oh
ICML Workshop 12, 2021
32021
Sub-modularity of waterfilling with applications to online basestation allocation
KK Thekumparampil, A Thangaraj, R Vaze
arXiv preprint arXiv:1402.4892, 2014
32014
Accelerating sinkhorn algorithm with sparse newton iterations
X Tang, M Shavlovsky, H Rahmanian, E Tardini, KK Thekumparampil, ...
arXiv preprint arXiv:2401.12253, 2024
12024
系统目前无法执行此操作,请稍后再试。
文章 1–20