Attention-based graph neural network for semi-supervised learning KK Thekumparampil, C Wang, S Oh, LJ Li arXiv preprint arXiv:1803.03735, 2018 | 410 | 2018 |
Robustness of conditional gans to noisy labels KK Thekumparampil, A Khetan, Z Lin, S Oh Advances in neural information processing systems 31, 2018 | 267 | 2018 |
Efficient algorithms for smooth minimax optimization KK Thekumparampil, P Jain, P Netrapalli, S Oh Advances in Neural Information Processing Systems 32, 2019 | 198 | 2019 |
Infogan-cr and modelcentrality: Self-supervised model training and selection for disentangling gans Z Lin, K Thekumparampil, G Fanti, S Oh international conference on machine learning, 6127-6139, 2020 | 124* | 2020 |
Learning from comparisons and choices S Negahban, S Oh, KK Thekumparampil, J Xu Journal of Machine Learning Research 19 (40), 1-95, 2018 | 47 | 2018 |
Collaboratively learning preferences from ordinal data S Oh, KK Thekumparampil, J Xu Advances in Neural Information Processing Systems 28, 2015 | 35 | 2015 |
Lifted primal-dual method for bilinearly coupled smooth minimax optimization KK Thekumparampil, N He, S Oh International Conference on Artificial Intelligence and Statistics, 4281-4308, 2022 | 27 | 2022 |
Projection efficient subgradient method and optimal nonsmooth frank-wolfe method KK Thekumparampil, P Jain, P Netrapalli, S Oh Advances in Neural Information Processing Systems 33, 12211-12224, 2020 | 26 | 2020 |
Efficient algorithms for federated saddle point optimization C Hou, KK Thekumparampil, G Fanti, S Oh arXiv preprint arXiv:2102.06333, 2021 | 22 | 2021 |
Combinatorial resource allocation using submodularity of waterfilling K Thekumparampil, A Thangaraj, R Vaze IEEE Transactions on Wireless Communications 15 (1), 206-216, 2015 | 15 | 2015 |
Sample efficient linear meta-learning by alternating minimization KK Thekumparampil, P Jain, P Netrapalli, S Oh arXiv preprint arXiv:2105.08306, 2021 | 13 | 2021 |
FeDChain: Chained algorithms for near-optimal communication cost in federated learning C Hou, KK Thekumparampil, G Fanti, S Oh arXiv preprint arXiv:2108.06869, 2021 | 12 | 2021 |
Bring your own algorithm for optimal differentially private stochastic minimax optimization L Zhang, KK Thekumparampil, S Oh, N He Advances in Neural Information Processing Systems 35, 35174-35187, 2022 | 11 | 2022 |
Statistically and computationally efficient linear meta-representation learning KK Thekumparampil, P Jain, P Netrapalli, S Oh Advances in Neural Information Processing Systems 34, 18487-18500, 2021 | 10 | 2021 |
DPZero: dimension-independent and differentially private zeroth-order optimization L Zhang, KK Thekumparampil, S Oh, N He arXiv preprint arXiv:2310.09639, 2023 | 5 | 2023 |
Reducing the communication cost of federated learning through multistage optimization C Hou, KK Thekumparampil, G Fanti, S Oh arXiv preprint arXiv:2108.06869, 2021 | 5 | 2021 |
Robust conditional gans under missing or uncertain labels KK Thekumparampil, S Oh, A Khetan arXiv preprint arXiv:1906.03579, 2019 | 5 | 2019 |
Multistage stepsize schedule in federated learning: Bridging theory and practice GFC Hou, K Thekumparampil, S Oh ICML Workshop 12, 2021 | 3 | 2021 |
Sub-modularity of waterfilling with applications to online basestation allocation KK Thekumparampil, A Thangaraj, R Vaze arXiv preprint arXiv:1402.4892, 2014 | 3 | 2014 |
Accelerating sinkhorn algorithm with sparse newton iterations X Tang, M Shavlovsky, H Rahmanian, E Tardini, KK Thekumparampil, ... arXiv preprint arXiv:2401.12253, 2024 | 1 | 2024 |