关注
Benjamin Hawks
标题
引用次数
引用次数
年份
hls4ml: An open-source codesign workflow to empower scientific low-power machine learning devices
F Fahim, B Hawks, C Herwig, J Hirschauer, S Jindariani, N Tran, ...
arXiv preprint arXiv:2103.05579, 2021
1382021
Applications and techniques for fast machine learning in science
AMC Deiana, N Tran, J Agar, M Blott, G Di Guglielmo, J Duarte, P Harris, ...
Frontiers in big Data 5, 2022
542022
Ps and Qs: Quantization-aware pruning for efficient low latency neural network inference
N Tran, B Hawks, JM Duarte, NJ Fraser, A Pappalardo, Y Umuroglu
Frontiers in Artificial Intelligence 4, 94, 2021
472021
GPU-accelerated machine learning inference as a service for computing in neutrino experiments
M Wang, T Yang, MA Flechas, P Harris, B Hawks, B Holzman, K Knoepfel, ...
Frontiers in big Data 3, 604083, 2021
282021
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
H Borras, G Di Guglielmo, J Duarte, N Ghielmetti, B Hawks, S Hauck, ...
arXiv preprint arXiv:2206.11791, 2022
132022
Qonnx: Representing arbitrary-precision quantized neural networks
A Pappalardo, Y Umuroglu, M Blott, J Mitrevski, B Hawks, N Tran, ...
arXiv preprint arXiv:2206.07527, 2022
112022
FastML Science Benchmarks: Accelerating Real-Time Scientific Edge Machine Learning
J Duarte, N Tran, B Hawks, C Herwig, J Muhizi, S Prakash, VJ Reddi
arXiv preprint arXiv:2207.07958, 2022
82022
hls4ml: An open-source codesign workflow to empower scientific low-power machine learning devices. arXiv
F Fahim, B Hawks, C Herwig, J Hirschauer, S Jindariani, N Tran, ...
arXiv preprint arXiv:2103.05579, 2021
52021
Fkeras: A sensitivity analysis tool for edge neural networks
O Weng, A Meza, Q Bock, B Hawks, J Campos, N Tran, JM Duarte, ...
Journal on Autonomous Transportation Systems, 2024
12024
hls4ml Demo Lab for DEFCON 30
A Meza, B Hawks
Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2022
1*2022
Real-time machine learning inferencing with edge computing devices from google and intel
B Hawks, P Jasal, M Wang, B Nord
Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States), 2019
12019
Reliable edge machine learning hardware for scientific applications
T Baldi, J Campos, B Hawks, J Ngadiuba, N Tran, D Diaz, J Duarte, ...
2024 IEEE 42nd VLSI Test Symposium (VTS), 1-5, 2024
2024
Applications of Deep Learning to physics workflows
M Agarwal, J Alameda, J Audenaert, W Benoit, D Beveridge, ...
arXiv preprint arXiv:2306.08106, 2023
2023
submitter: Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
H Borras, R Kastner, T Nguyen, M Blott, N Tran, R Roy, Y Umuroglu, ...
2022
Exploring FPGA in-storage computing for Supernova Burst detection in LArTPCs [Poster]
J Mitrevski, B Hawks, T Cai, PF Ding, T Junk, K Scholberg, J Shen, N Tran, ...
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States), 2022
2022
Applications and techniques for fast machine learning in science
AMC Deiana, N Tran, J Agar, M Blott, G Di Guglielmo, J Duarte, P Harris, ...
Frontiers in big Data 5, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–16