A general framework for validated continuation of periodic orbits in systems of polynomial ODEs JB van den Berg, E Queirolo Journal of Computational Dynamics 8 (1), 59-97, 2020 | 15 | 2020 |
Rigorous verification of Hopf bifurcations via desingularization and continuation JB Van den Berg, JP Lessard, E Queirolo SIAM Journal on Applied Dynamical Systems 20 (2), 573-607, 2021 | 14 | 2021 |
Rigorous validation of a Hopf bifurcation in the Kuramoto–Sivashinsky PDE JB van den Berg, E Queirolo Communications in Nonlinear Science and Numerical Simulation 108, 106133, 2022 | 6 | 2022 |
Global analysis of regulatory network dynamics: equilibria and saddle-node bifurcations S Kepley, K Mischaikow, E Queirolo arXiv preprint arXiv:2204.13739, 2022 | 3 | 2022 |
Computer-assisted proofs of Hopf bubbles and degenerate Hopf bifurcations K Church, E Queirolo Journal of Dynamics and Differential Equations, 1-55, 2023 | 2 | 2023 |
Computer validation of neural network dynamics: A first case study C Kuehn, E Queirolo arXiv preprint arXiv:2202.05073, 2022 | 1 | 2022 |
On the transition between autonomous and nonautonomous systems: the case of FitzHugh-Nagumo's model IP Longo, E Queirolo, C Kuehn arXiv preprint arXiv:2408.12256, 2024 | | 2024 |
Following periodic orbits through bifurcations E Queirolo | | 2019 |
Computer Validation of Neural Network Dynamics: A First Case Study E Queirolo, C Kuehn Available at SSRN 4547794, 0 | | |