关注
Lucas Lehnert
Lucas Lehnert
在 usask.ca 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
State abstractions for lifelong reinforcement learning
D Abel, D Arumugam, L Lehnert, M Littman
International Conference on Machine Learning, 10-19, 2018
1542018
Advantages and limitations of using successor features for transfer in reinforcement learning
L Lehnert, S Tellex, ML Littman
arXiv preprint arXiv:1708.00102, 2017
592017
Successor features combine elements of model-free and model-based reinforcement learning
L Lehnert, ML Littman
Journal of Machine Learning Research 21 (196), 1-53, 2020
432020
Reward-predictive representations generalize across tasks in reinforcement learning
L Lehnert, ML Littman, MJ Frank
PLoS computational biology 16 (10), e1008317, 2020
392020
On value function representation of long horizon problems
L Lehnert, R Laroche, H van Seijen
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
272018
Beyond a*: Better planning with transformers via search dynamics bootstrapping
L Lehnert, S Sukhbaatar, DJ Su, Q Zheng, P Mcvay, M Rabbat, Y Tian
arXiv preprint arXiv:2402.14083, 2024
212024
Successor features support model-based and model-free reinforcement learning
L Lehnert, ML Littman
CoRR abs/1901.11437, 2019
172019
Mitigating planner overfitting in model-based reinforcement learning
D Arumugam, D Abel, K Asadi, N Gopalan, C Grimm, JK Lee, L Lehnert, ...
arXiv preprint arXiv:1812.01129, 2018
142018
Toward good abstractions for lifelong learning
D Abel, D Arumugam, L Lehnert, ML Littman
NIPS Workshop on Hierarchical Reinforcement Learning, 2017
132017
Transfer with model features in reinforcement learning
L Lehnert, ML Littman
arXiv preprint arXiv:1807.01736, 2018
122018
Iql-td-mpc: Implicit q-learning for hierarchical model predictive control
R Chitnis, Y Xu, B Hashemi, L Lehnert, U Dogan, Z Zhu, O Delalleau
2024 IEEE International Conference on Robotics and Automation (ICRA), 9154-9160, 2024
72024
Policy gradient methods for off-policy control
L Lehnert, D Precup
arXiv preprint arXiv:1512.04105, 2015
72015
Maximum state entropy exploration using predecessor and successor representations
AK Jain, L Lehnert, I Rish, G Berseth
Advances in Neural Information Processing Systems 36, 2024
62024
Advantages and Limitations of using Successor Features for Transfer in Reinforcement Learning. arXiv. 2017
L Lehnert, S Tellex, ML Littman
arXiv preprint arXiv:1708.00102, 0
5
Reward-Predictive Clustering
L Lehnert, MJ Frank, ML Littman
arXiv preprint arXiv:2211.03281, 2022
2022
Off-policy control under changing behaviour
L Lehnert
McGill University (Canada), 2016
2016
Scalable Approaches for a Theory of Many Minds
MP Touzel, A Memarian, M Riemer, A Mircea, AR Williams, E Ahlstrand, ...
Agentic Markets Workshop at ICML 2024, 0
Using Policy Gradients to Account for Changes in Behaviour Policies under Off-policy Control
L Lehnert, D Precup
David Abel
D Abel, EC Williams, S Brawner, E Reif, ML Littman, DE Hershkowitz, ...
Building a Curious Robot for Mapping
L Lehnert, D Precup
系统目前无法执行此操作,请稍后再试。
文章 1–20