State abstractions for lifelong reinforcement learning D Abel, D Arumugam, L Lehnert, M Littman International Conference on Machine Learning, 10-19, 2018 | 154 | 2018 |
Advantages and limitations of using successor features for transfer in reinforcement learning L Lehnert, S Tellex, ML Littman arXiv preprint arXiv:1708.00102, 2017 | 59 | 2017 |
Successor features combine elements of model-free and model-based reinforcement learning L Lehnert, ML Littman Journal of Machine Learning Research 21 (196), 1-53, 2020 | 43 | 2020 |
Reward-predictive representations generalize across tasks in reinforcement learning L Lehnert, ML Littman, MJ Frank PLoS computational biology 16 (10), e1008317, 2020 | 39 | 2020 |
On value function representation of long horizon problems L Lehnert, R Laroche, H van Seijen Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 27 | 2018 |
Beyond a*: Better planning with transformers via search dynamics bootstrapping L Lehnert, S Sukhbaatar, DJ Su, Q Zheng, P Mcvay, M Rabbat, Y Tian arXiv preprint arXiv:2402.14083, 2024 | 21 | 2024 |
Successor features support model-based and model-free reinforcement learning L Lehnert, ML Littman CoRR abs/1901.11437, 2019 | 17 | 2019 |
Mitigating planner overfitting in model-based reinforcement learning D Arumugam, D Abel, K Asadi, N Gopalan, C Grimm, JK Lee, L Lehnert, ... arXiv preprint arXiv:1812.01129, 2018 | 14 | 2018 |
Toward good abstractions for lifelong learning D Abel, D Arumugam, L Lehnert, ML Littman NIPS Workshop on Hierarchical Reinforcement Learning, 2017 | 13 | 2017 |
Transfer with model features in reinforcement learning L Lehnert, ML Littman arXiv preprint arXiv:1807.01736, 2018 | 12 | 2018 |
Iql-td-mpc: Implicit q-learning for hierarchical model predictive control R Chitnis, Y Xu, B Hashemi, L Lehnert, U Dogan, Z Zhu, O Delalleau 2024 IEEE International Conference on Robotics and Automation (ICRA), 9154-9160, 2024 | 7 | 2024 |
Policy gradient methods for off-policy control L Lehnert, D Precup arXiv preprint arXiv:1512.04105, 2015 | 7 | 2015 |
Maximum state entropy exploration using predecessor and successor representations AK Jain, L Lehnert, I Rish, G Berseth Advances in Neural Information Processing Systems 36, 2024 | 6 | 2024 |
Advantages and Limitations of using Successor Features for Transfer in Reinforcement Learning. arXiv. 2017 L Lehnert, S Tellex, ML Littman arXiv preprint arXiv:1708.00102, 0 | 5 | |
Reward-Predictive Clustering L Lehnert, MJ Frank, ML Littman arXiv preprint arXiv:2211.03281, 2022 | | 2022 |
Off-policy control under changing behaviour L Lehnert McGill University (Canada), 2016 | | 2016 |
Scalable Approaches for a Theory of Many Minds MP Touzel, A Memarian, M Riemer, A Mircea, AR Williams, E Ahlstrand, ... Agentic Markets Workshop at ICML 2024, 0 | | |
Using Policy Gradients to Account for Changes in Behaviour Policies under Off-policy Control L Lehnert, D Precup | | |
David Abel D Abel, EC Williams, S Brawner, E Reif, ML Littman, DE Hershkowitz, ... | | |
Building a Curious Robot for Mapping L Lehnert, D Precup | | |