Artificial intelligence for science in quantum, atomistic, and continuum systems X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie, M Liu, Y Lin, Z Xu, K Yan, ... arXiv preprint arXiv:2307.08423, 2023 | 81 | 2023 |
Understanding convolutions on graphs A Daigavane, B Ravindran, G Aggarwal Distill 6 (9), e32, 2021 | 57 | 2021 |
Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts L Schiff, B Migliori, Y Chen, D Carter, C Bonilla, J Hall, M Fan, E Tam, ... Nature communications 13 (1), 1590, 2022 | 50 | 2022 |
Node-level differentially private graph neural networks A Daigavane, G Madan, A Sinha, AG Thakurta, G Aggarwal, P Jain arXiv preprint arXiv:2111.15521, 2021 | 45 | 2021 |
Unsupervised detection of Saturn magnetic field boundary crossings from plasma spectrometer data A Daigavane, KL Wagstaff, G Doran, CJ Cochrane, CM Jackman, ... Computers & Geosciences 161, 105040, 2022 | 6 | 2022 |
Symphony: Symmetry-Equivariant Point-Centered Spherical Harmonics for Molecule Generation A Daigavane, S Kim, M Geiger, T Smidt arXiv preprint arXiv:2311.16199, 2023 | 5 | 2023 |
Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv 2023 X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie, M Liu, Y Lin, Z Xu, K Yan, ... arXiv preprint arXiv:2307.08423 10, 2023 | 5 | 2023 |
NYSCF Global Stem Cell Array® Team L Schiff, B Migliori, Y Chen, D Carter, C Bonilla, J Hall, M Fan, E Tam, ... Nelson PC, Frumkin M, Solomon SL, Bauer L, Aiyar RS, Schwarzbach E, Noggle …, 2022 | 5 | 2022 |
Detection of environment transitions in time series data for responsive science A Daigavane, KL Wagstaff, G Doran, C Cochrane, C Jackman, A Rymer 6th SIGKDD Workshop on Mining and Learning from Time Series (MiLeTS), 2020 | 5 | 2020 |
Learning integrable dynamics with action-angle networks A Daigavane, A Kosmala, M Cranmer, T Smidt, S Ho arXiv preprint arXiv:2211.15338, 2022 | 2 | 2022 |
Resource consumption and radiation tolerance assessment for data analysis algorithms onboard spacecraft G Doran, A Daigavane, KL Wagstaff IEEE Transactions on Aerospace and Electronic Systems 58 (6), 5180-5189, 2022 | 2 | 2022 |
Privacy-Utility Trade-offs in Neural Networks for Medical Population Graphs: Insights from Differential Privacy and Graph Structure TT Mueller, M Chevli, A Daigavane, D Rueckert, G Kaissis arXiv preprint arXiv:2307.06760, 2023 | 1 | 2023 |
Differentially Private Graph Neural Networks for Medical Population Graphs and The Impact of The Graph Structure TT Mueller, M Chevli, A Daigavane, D Rueckert, G Kaissis 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1-5, 2024 | | 2024 |
Improving Generative Models for 3D Molecular Structures A Daigavane Massachusetts Institute of Technology, 2024 | | 2024 |
The Price of Freedom: Exploring Tradeoffs between Expressivity and Computational Efficiency in Equivariant Tensor Products YQ Xie, A Daigavane, M Kotak, T Smidt ICML 2024 Workshop on Geometry-grounded Representation Learning and …, 2024 | | 2024 |
Symbolic Binding in Neural Networks through Factorized Memory Systems AS Daigavane, A Khurana, G Aggarwal, S Bhardwaj | | 2022 |
Magnetic Field Boundaries in Cassini Plasma Spectrometer Data M Thomson, G Doran, A Rymer, C Cochrane, M Dougherty, A Daigavane, ... Zenodo, 2021 | | 2021 |
Time-Series Methods for Responsive Instruments: A Flight-System-Like Implementation K Wagstaff, GB Doran, A Daigavane Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space …, 2020 | | 2020 |
2-uniform words: cycle graphs, and an algorithm to verify specific word-representations of graphs A Daigavane, M Singh, BK George arXiv preprint arXiv:1806.04673, 2018 | | 2018 |
Dense Crowd Profiling and Simulation Systems A Daigavane, S Kaneriya | | |