关注
Martijn Witjes
Martijn Witjes
Research Engineer, OpenGeoHub Foundation
在 opengeohub.org 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat
M Witjes, L Parente, CJ van Diemen, T Hengl, M Landa, L Brodský, ...
PeerJ 10, e13573, 2022
282022
Linked Spatial Data for a Circular Economy: Exploring its potential through a Textile Use Case.
E Sauter, M Witjes
SEMANTiCS (Posters & Demos), 2017
172017
sOilFauna-a global synthesis effort on the drivers of soil macrofauna communities and functioning
J Mathieu, AC Antunes, S Barot, AE Bonato Asato, MLC Bartz, GG Brown, ...
132022
Ecodatacube.eu: Analysis-ready open environmental data cube for Europe
M Witjes, L Parente, J Križan, T Hengl, L Antonić
PeerJ 11, e15478, 2023
92023
Continental Europe land cover mapping at 30m resolution based CORINE and LUCAS on samples
L Parente, M Witjes, T Hengl, M Landa, L Brodsky
Zenodo. Org. https://doi. org/10, 2021
72021
Time-series of Landsat-based bi-monthly and annual spectral indices for continental Europe for 2000–2022
X Tian, D Consoli, M Witjes, F Schneider, L Parente, M Şahin, YF Ho, ...
Earth System Science Data Discussions 2024, 1-49, 2024
32024
A computational framework for processing time-series of Earth Observation data based on discrete convolution: global-scale historical Landsat cloud-free aggregates at 30 m …
D Consoli, L Parente, R Simoes, M Şahin, X Tian, M Witjes, L Sloat, ...
22024
Iterative mapping of probabilities: A data fusion framework for generating accurate land cover maps that match area statistics
M Witjes, M Herold, S de Bruin
International Journal of Applied Earth Observation and Geoinformation 131 …, 2024
12024
Global Pasture Watch-Global machine learning model for prediction of cultivated and natural/semi-natural grassland
L Parente, L Sloat, V Mesquita, D Consoli, R Stanimirova, T Hengl, ...
Zenodo, 2024
12024
Global Pasture Watch-Annual grassland class and extent maps at 30-m spatial resolution (2000—2022)
L Parente, L Sloat, V Mesquita, D Consoli, R Stanimirova, T Hengl, ...
Zenodo, 2024
12024
Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal Machine Learning
L Parente, L Sloat, V Mesquita, D Consoli, R Stanimirova, T Hengl, ...
Scientific data 11 (1), 1-22, 2024
2024
Mapping global grassland dynamics 2000—2022 at 30m spatial resolution using spatiotemporal Machine Learning
L Parente, L Sloat, V Mesquita, D Consoli, R Stanimirova, T Hengl, ...
2024
A new methodology for time-series reconstruction of global scale historical Earth observation data
D Consoli, L Parente, M Witjes
EGU24, 2024
2024
Mapping everything, everywhere, all the time: Modeling European land cover using data fusion and machine learning
M Witjes
PQDT-Global, 2024
2024
A harmonized Landsat Sentinel-2 (HLS) dataset for benchmarking time series reconstruction methods of vegetation indices
D Consoli, L Leal Parente, M Witjes, T Hengl
OpenGeoHub Foundation, 2023
2023
Iterative Mapping of Probabilities
M Witjes, M Herold, S de Bruin
Wageningen University & Research, 0
系统目前无法执行此操作,请稍后再试。
文章 1–16