A general theory of hypothesis tests and confidence regions for sparse high dimensional models Y Ning, H Liu | 337 | 2017 |
Glycated hemoglobin and the risk of kidney disease and retinopathy in adults with and without diabetes E Selvin, Y Ning, MW Steffes, LD Bash, R Klein, TY Wong, BC Astor, ... diabetes 60 (1), 298-305, 2011 | 164 | 2011 |
High dimensional semiparametric latent graphical model for mixed data J Fan, H Liu, Y Ning, H Zou Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2017 | 127 | 2017 |
A unified theory of confidence regions and testing for high-dimensional estimating equations M Neykov, Y Ning, JS Liu, H Liu | 96 | 2018 |
Robust estimation of causal effects via a high-dimensional covariate balancing propensity score Y Ning, P Sida, K Imai Biometrika 107 (3), 533-554, 2020 | 84 | 2020 |
High dimensional em algorithm: Statistical optimization and asymptotic normality Z Wang, Q Gu, Y Ning, H Liu Advances in neural information processing systems 28, 2015 | 81 | 2015 |
Testing and confidence intervals for high dimensional proportional hazards models EX Fang, Y Ning, H Liu Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2017 | 80 | 2017 |
Improving covariate balancing propensity score: A doubly robust and efficient approach J Fan, K Imai, H Liu, Y Ning, X Yang URL: https://imai. fas. harvard. edu/research/CBPStheory. html, 2016 | 70 | 2016 |
Efficient augmentation and relaxation learning for individualized treatment rules using observational data YQ Zhao, EB Laber, Y Ning, S Saha, BE Sands Journal of Machine Learning Research 20 (48), 1-23, 2019 | 66 | 2019 |
Differential principal component analysis of ChIP-seq H Ji, X Li, Q Wang, Y Ning Proceedings of the National Academy of Sciences 110 (17), 6789-6794, 2013 | 57 | 2013 |
Heterogeneity-aware and communication-efficient distributed statistical inference R Duan, Y Ning, Y Chen Biometrika 109 (1), 67-83, 2022 | 56 | 2022 |
High dimensional expectation-maximization algorithm: Statistical optimization and asymptotic normality Z Wang, Q Gu, Y Ning, H Liu arXiv preprint arXiv:1412.8729, 2014 | 56 | 2014 |
On semiparametric exponential family graphical models Z Yang, Y Ning, H Liu arXiv preprint arXiv:1412.8697, 2014 | 48* | 2014 |
A likelihood ratio framework for high-dimensional semiparametric regression Y Ning, T Zhao, H Liu | 46 | 2017 |
Adaptive estimation in structured factor models with applications to overlapping clustering X Bing, F Bunea, Y Ning, M Wegkamp | 39 | 2020 |
Test of significance for high-dimensional longitudinal data EX Fang, Y Ning, R Li Annals of statistics 48 (5), 2622, 2020 | 29 | 2020 |
High-dimensional mixed graphical model with ordinal data: Parameter estimation and statistical inference H Feng, Y Ning The 22nd international conference on artificial intelligence and statistics …, 2019 | 29 | 2019 |
Optimal covariate balancing conditions in propensity score estimation J Fan, K Imai, I Lee, H Liu, Y Ning, X Yang Journal of Business & Economic Statistics 41 (1), 97-110, 2022 | 28 | 2022 |
Penalized pairwise pseudo likelihood for variable selection with nonignorable missing data J Zhao, Y Yang, Y Ning Statistica Sinica 28 (4), 2125-2148, 2018 | 28 | 2018 |
Optimal sampling for generalized linear models under measurement constraints T Zhang, Y Ning, D Ruppert Journal of Computational and Graphical Statistics 30 (1), 106-114, 2021 | 27 | 2021 |