A GNN-RNN approach for harnessing geospatial and temporal information: application to crop yield prediction J Fan, J Bai, Z Li, A Ortiz-Bobea, CP Gomes Proceedings of the AAAI conference on artificial intelligence 36 (11), 11873 …, 2022 | 78 | 2022 |
Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge S Mukherjee, Y Zhang, J Fan, G Seelig, S Kannan Bioinformatics 34 (13), i124-i132, 2018 | 20 | 2018 |
Detecting aquaculture with deep learning in a low-data setting. L Greenstreet, J Fan, FS Pacheco, Y Bai, ME Ummus, C Doria, NO Barros, ... In: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach., 2023 | 3 | 2023 |
Monitoring Vegetation From Space at Extremely Fine Resolutions via Coarsely-Supervised Smooth U-Net J Fan, D Chen, J Wen, Y Sun, CP Gomes Proceedings of the Thirty-First International Joint Conference on Artificial …, 2022 | 2* | 2022 |
AiSciVision: A Framework for Specializing Large Multimodal Models in Scientific Image Classification B Hogan, A Kabra, FS Pacheco, L Greenstreet, J Fan, A Ferber, M Ummus, ... arXiv preprint arXiv:2410.21480, 2024 | | 2024 |
Detecting Aquaculture in the Brazilian Amazon using Deep Learning in a Low-Data Setting L Greenstreet, F Pacheco, J Fan, Y Bai, M Eichemberger Ummus, ... AGU Fall Meeting Abstracts 2023 (969), GC21F-0969, 2023 | | 2023 |
Unaccounted Land and Carbon Footprint of Aquaculture in the Amazon. F Pacheco, S Heilpern, R Almeida, I Barbosa, N Oliveira Barros, J Cavali, ... AGU Fall Meeting Abstracts 2023, B22A-08, 2023 | | 2023 |
AI-powered interpretation of dryland carbon dynamics Y Zhou, ME Litvak, J Fan, W Guo, T Duman, C Gomes, Y Luo AGU24, 0 | | |