librosa: Audio and music signal analysis in python. B McFee, C Raffel, D Liang, DPW Ellis, M McVicar, E Battenberg, O Nieto SciPy, 18-24, 2015 | 2960 | 2015 |
Variational autoencoders for collaborative filtering D Liang, RG Krishnan, MD Hoffman, T Jebara Proceedings of the 2018 World Wide Web Conference, 689-698, 2018 | 1279 | 2018 |
mir_eval: a transparent implementation of common MIR metrics C Raffel, B McFee, EJ Humphrey, J Salamon, O Nieto, D Liang, DPW Ellis ISMIR, 367-372, 2014 | 587 | 2014 |
Modeling user exposure in recommendation D Liang, L Charlin, J McInerney, DM Blei Proceedings of the 25th international conference on World Wide Web, 951-961, 2016 | 405 | 2016 |
Edward: A library for probabilistic modeling, inference, and criticism D Tran, A Kucukelbir, AB Dieng, M Rudolph, D Liang, DM Blei arXiv preprint arXiv:1610.09787, 2016 | 351 | 2016 |
Factorization meets the item embedding: Regularizing matrix factorization with item co-occurrence D Liang, J Altosaar, L Charlin, DM Blei Proceedings of the 10th ACM conference on recommender systems, 59-66, 2016 | 309 | 2016 |
Causal inference for recommender systems Y Wang, D Liang, L Charlin, DM Blei Proceedings of the 14th ACM Conference on Recommender Systems, 426-431, 2020 | 137 | 2020 |
Deep learning for recommender systems: A Netflix case study H Steck, L Baltrunas, E Elahi, D Liang, Y Raimond, J Basilico AI Magazine 42 (3), 7-18, 2021 | 119 | 2021 |
Causal inference for recommendation D Liang, L Charlin, DM Blei Causation: Foundation to Application, Workshop at UAI. AUAI 6 (41), 108, 2016 | 119 | 2016 |
Content-Aware Collaborative Music Recommendation Using Pre-trained Neural Networks D Liang, M Zhan, DPW Ellis ISMIR, 295-301, 2015 | 99 | 2015 |
On the challenges of learning with inference networks on sparse, high-dimensional data R Krishnan, D Liang, M Hoffman International conference on artificial intelligence and statistics, 143-151, 2018 | 91 | 2018 |
The deconfounded recommender: A causal inference approach to recommendation Y Wang, D Liang, L Charlin, DM Blei arXiv preprint arXiv:1808.06581, 2018 | 71 | 2018 |
Large language models as zero-shot conversational recommenders Z He, Z Xie, R Jha, H Steck, D Liang, Y Feng, BP Majumder, N Kallus, ... Proceedings of the 32nd ACM international conference on information and …, 2023 | 63 | 2023 |
librosa 0.5. 0 B McFee, M McVicar, O Nieto, S Balke, C Thome, D Liang, E Battenberg, ... Zenodo. URL: https://doi. org/10 5281, 2017 | 55 | 2017 |
librosa: 0.4. 1 B McFee, M McVicar, C Raffel, D Liang, O Nieto, E Battenberg, J Moore, ... Zenodo, 2015 | 47 | 2015 |
Beta Process Sparse Nonnegative Matrix Factorization for Music D Liang, MD Hoffman, DPW Ellis ISMIR, 375-380, 2013 | 34 | 2013 |
Methods and prospects for human–computer performance of popular music RB Dannenberg, NE Gold, D Liang, G Xia Computer Music Journal 38 (2), 36-50, 2014 | 30 | 2014 |
Music genre classification with the million song dataset D Liang, H Gu, B O’Connor Machine Learning Department, CMU, 2011 | 29 | 2011 |
Active scores: Representation and synchronization in human–computer performance of popular music RB Dannenberg, NE Gold, D Liang, G Xia Computer Music Journal 38 (2), 51-62, 2014 | 22 | 2014 |
Codebook-based Scalable Music Tagging with Poisson Matrix Factorization D Liang, J Paisley, DPW Ellis ISMIR, 167-172, 2014 | 21 | 2014 |