Comparing different approaches for automatic pronunciation error detection H Strik, K Truong, F de Wet, C Cucchiarini Speech Communication 51 (10), 845-852, 2009 | 193 | 2009 |
A smartphone-based ASR data collection tool for under-resourced languages NJ De Vries, MH Davel, J Badenhorst, WD Basson, F de Wet, E Barnard, ... Speech Communication 56, 119-131, 2014 | 141 | 2014 |
The NCHLT speech corpus of the South African languages E Barnard, MH Davel, C van Heerden, F de Wet, J Badenhorst Proccedings of the 4th Workshop on Spoken Language Technologies for Under …, 2014 | 107 | 2014 |
Implications of Sepedi/English code switching for ASR systems TI Modipa, F de Wet, MH Davel Proceedings of PRASA, 2013 | 63 | 2013 |
Automatic assessment of oral language proficiency and listening comprehension F de Wet, C Van der Walt, TR Niesler Speech Communication 51 (10), 864-874, 2009 | 60 | 2009 |
Comparing classifiers for pronunciation error detection H Strik, KP Truong, F de Wet, C Cucchiarini Interspeech, Antwerp, Belgium, 2007 | 53 | 2007 |
Evaluation of formant-like features on an automatic vowel classification task F de Wet, K Weber, L Boves, B Cranen, S Bengio, H Bourlard The Journal of the Acoustical Society of America 116 (3), 1781-1792, 2004 | 41* | 2004 |
Assessment of Dutch pronunciation by means of automatic speech recognition technology C Cucchiarini, F de Wet, H Strik, LWJ Boves ICSLP, Sydney, Australia, 1998 | 40 | 1998 |
Automatic detection of frequent pronunciation errors made by L2-learners KP Truong, A Neri, F de Wet, C Cucchiarini, H Strik Interspeech, Lisbon, Portugal, 2005 | 31 | 2005 |
Missing feature theory in ASR: make sure you miss the right type of features JM de Veth, F de Wet, B Cranen, LWJ Boves NOKIA Workshop on Robust Methods for Speech Recognition in Adverse …, 1999 | 27 | 1999 |
Verifying pronunciation dictionaries using conflict analysis. MH Davel, F de Wet Interspeech, Makuhari, Chiba, Japan, 1898-1901, 2010 | 26 | 2010 |
Multilingual Neural Network Acoustic Modelling for ASR of Under-Resourced English-isiZulu Code-Switched Speech. A Biswas, F de Wet, E van der Westhuizen, E Yilmaz, T Niesler Interspeech, Hyderabad, India, 2603-2607, 2018 | 25 | 2018 |
Automatically assessing the oral proficiency of proficient L2 speakers P Müller, F de Wet, C van der Walt, T Niesler International Workshop on Speech and Language Technology in Education, 2009 | 24 | 2009 |
Building a Unified Code-Switching ASR System for South African Languages E Yılmaz, A Biswas, E van der Westhuizen, F de Wet, T Niesler arXiv preprint arXiv:1807.10949, 2018 | 22 | 2018 |
The origin of Afrikaans pronunciation: a comparison to west Germanic languages and Dutch dialects W Heeringa, F de Wet Proceedings of PRASA, 159-164, 2008 | 21 | 2008 |
ASR-based pronunciation training: Scoring accuracy and pedagogical effectiveness of a system for Dutch L2 learners C Cucchiarini, A Neri, F de Wet, H Strik Interspeech, Antwerp, Belgium, 2007 | 21 | 2007 |
Semi-supervised acoustic model training for five-lingual code-switched ASR A Biswas, E Yılmaz, F de Wet, E van der Westhuizen, T Niesler arXiv preprint arXiv:1906.08647, 2019 | 19 | 2019 |
Quality measurements for mobile data collection in the developing world J Badenhorst, A de Waal, F de Wet Proccedings of the 3rd Workshop on Spoken Language Technologies for Under …, 2012 | 19 | 2012 |
Additive background noise as a source of non-linear mismatch in the cepstral and log-energy domain F de Wet, J de Veth, L Boves, B Cranen Computer Speech & Language 19 (1), 31-54, 2005 | 19 | 2005 |
Capitalising on North American speech resources for the development of a South African English large vocabulary speech recognition system H Kamper, F de Wet, T Hain, T Niesler Computer Speech & Language 28 (6), 1255-1268, 2014 | 18 | 2014 |