An application of dbscan clustering for flight anomaly detection during the approach phase K Sheridan, TG Puranik, E Mangortey, OJ Pinon-Fischer, M Kirby, ... AIAA Scitech 2020 Forum, 1851, 2020 | 111 | 2020 |
Anomaly Detection in General-Aviation Operations Using Energy Metrics and Flight-Data Records TG Puranik, DN Mavris Journal of Aerospace Information Systems 15 (1), 22-35, 2018 | 83 | 2018 |
Towards online prediction of safety-critical landing metrics in aviation using supervised machine learning TG Puranik, N Rodriguez, DN Mavris Transportation Research Part C: Emerging Technologies 120, 102819, 2020 | 64 | 2020 |
Energy-Based Metrics for Safety Analysis of General Aviation Operations T Puranik, H Jimenez, D Mavris Journal of Aircraft 54 (6), 2285-2297, 2017 | 50 | 2017 |
Natural language processing based method for clustering and analysis of aviation safety narratives RL Rose, TG Puranik, DN Mavris Aerospace 7 (10), 143, 2020 | 49 | 2020 |
Critical parameter identification for safety events in commercial aviation using machine learning HK Lee, S Madar, S Sairam, TG Puranik, AP Payan, M Kirby, OJ Pinon, ... Aerospace 7 (6), 73, 2020 | 48 | 2020 |
Trajectory clustering within the terminal airspace utilizing a weighted distance function SJ Corrado, TG Puranik, OJ Pinon, DN Mavris Proceedings 59 (1), 7, 2020 | 39 | 2020 |
Application of machine learning techniques to parameter selection for flight risk identification E Mangortey, D Monteiro, J Ackley, Z Gao, TG Puranik, M Kirby, ... AIAA scitech 2020 forum, 1850, 2020 | 39 | 2020 |
Application of structural topic modeling to aviation safety data RL Rose, TG Puranik, DN Mavris, AH Rao Reliability Engineering & System Safety 224, 108522, 2022 | 37 | 2022 |
Identification of Instantaneous Anomalies in General Aviation Operations Using Energy Metrics TG Puranik, DN Mavris Journal of Aerospace Information Systems 17 (1), 1-15, 2019 | 37 | 2019 |
A supervised learning approach for safety event precursor identification in commercial aviation JL Ackley, TG Puranik, D Mavris AIAA Aviation 2020 Forum, 2880, 2020 | 30 | 2020 |
A clustering-based quantitative analysis of the interdependent relationship between spatial and energy anomalies in ADS-B trajectory data SJ Corrado, TG Puranik, OP Fischer, DN Mavris Transportation Research Part C: Emerging Technologies 131, 103331, 2021 | 28 | 2021 |
Empirical assessment of deep gaussian process surrogate models for engineering problems D Rajaram, TG Puranik, S Ashwin Renganathan, WJ Sung, OP Fischer, ... Journal of Aircraft 58 (1), 182-196, 2021 | 27 | 2021 |
Deep Gaussian process enabled surrogate models for aerodynamic flows D Rajaram, TG Puranik, A Renganathan, WJ Sung, OJ Pinon-Fischer, ... AIAA scitech 2020 forum, 1640, 2020 | 27 | 2020 |
Reduced order modeling methods for aviation noise estimation A Behere, D Rajaram, TG Puranik, M Kirby, DN Mavris Sustainability 13 (3), 1120, 2021 | 26 | 2021 |
Classification and analysis of go-arounds in commercial aviation using ADS-B data SG Kumar, SJ Corrado, TG Puranik, DN Mavris Aerospace 8 (10), 291, 2021 | 25 | 2021 |
Deep spatio-temporal neural networks for risk prediction and decision support in aviation operations HK Lee, TG Puranik, DN Mavris Journal of Computing and Information Science in Engineering 21 (4), 041013, 2021 | 23 | 2021 |
Randomized algorithms for non-intrusive parametric reduced order modeling D Rajaram, C Perron, TG Puranik, DN Mavris AIAA Journal 58 (12), 5389-5407, 2020 | 23 | 2020 |
Utilizing Energy Metrics and Clustering Techniques to Identify Anomalous General Aviation Operations TG Puranik, H Jimenez, DN Mavris AIAA Information Systems-AIAA Infotech@ Aerospace, 2017 | 23 | 2017 |
Identifying Instantaneous Anomalies in General Aviation Operations TG Puranik, DN Mavris 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017 | 22 | 2017 |