关注
Sascha Marton
标题
引用次数
引用次数
年份
Explanations for neural networks by neural networks
S Marton, S Lüdtke, C Bartelt
Applied Sciences 12 (3), 980, 2022
17*2022
GradTree: Learning Axis-Aligned Decision Trees with Gradient Descent
S Marton, S Lüdtke, C Bartelt, H Stuckenschmidt
Proceedings of the AAAI Conference on Artificial Intelligence 38 (13), 14323 …, 2024
8*2024
GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data
S Marton, S Lüdtke, C Bartelt, H Stuckenschmidt
International Conference on Learning Representations, 2024
6*2024
Bias mitigation for large language models using adversarial learning
JS Ernst, S Marton, J Brinkmann, E Vellasques, D Foucard, M Kraemer, ...
CEUR Workshop Proceedings 3523, 1-14, 2023
42023
Mapping glacier basal sliding applying machine learning
J Umlauft, CW Johnson, P Roux, DT Trugman, A Lecointre, A Walpersdorf, ...
Journal of Geophysical Research: Earth Surface 128 (11), e2023JF007280, 2023
32023
Explaining Neural Networks without Access to Training Data
S Marton, S Lüdtke, C Bartelt, A Tschalzev, H Stuckenschmidt
Machine Learning, 2024
22024
DSEG-LIME--Improving Image Explanation by Hierarchical Data-Driven Segmentation
P Knab, S Marton, C Bartelt
arXiv preprint arXiv:2403.07733, 2024
12024
Interpreting Outliers in Time Series Data through Decoding Autoencoder
P Knab, S Marton, C Bartelt, R Fuder
arXiv preprint arXiv:2409.01713, 2024
2024
SYMPOL: Symbolic Tree-Based On-Policy Reinforcement Learning
S Marton, T Grams, F Vogt, S Lüdtke, C Bartelt, H Stuckenschmidt
arXiv preprint arXiv:2408.08761, 2024
2024
A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data
A Tschalzev, S Marton, S Lüdtke, C Bartelt, H Stuckenschmidt
arXiv preprint arXiv:2407.02112, 2024
2024
Machine learning for converting Black-Box models to interpretable functions
S Marton, C Bartelt, H Stuckenschmidt
2020
系统目前无法执行此操作,请稍后再试。
文章 1–11