Predicting the outcomes of material syntheses with deep learning SA Malik, REA Goodall, AA Lee Chemistry of Materials 33 (2), 616-624, 2021 | 17 | 2021 |
BatchGFN: Generative Flow Networks for Batch Active Learning SA Malik, S Lahlou, A Jesson, M Jain, N Malkin, T Deleu, Y Bengio, Y Gal ICML 2023: Structured Probabilistic Inference & Generative Modeling Workshop, 2023 | 3 | 2023 |
Semantic entropy probes: Robust and cheap hallucination detection in llms J Kossen, J Han, M Razzak, L Schut, S Malik, Y Gal arXiv preprint arXiv:2406.15927, 2024 | 2 | 2024 |
Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels SA Malik, NL Eisner, CJ Lintott, Y Gal NeurIPS 2022: Machine Learning and the Physical Sciences Workshop, 2022 | 2 | 2022 |
Incorporating Direct EUV Irradiance from Solar Images into Thermospheric Density Modelling with Machine Learning TE Berger, S Malik, J Walsh, G Acciarini, AG Baydin AGU Fall Meeting Abstracts 2023, NG12A-05, 2023 | | 2023 |
High-Cadence Thermospheric Density Estimation enabled by Machine Learning on Solar Imagery SA Malik, J Walsh, G Acciarini, TE Berger, AG Baydin NeurIPS 2023: Machine Learning and the Physical Sciences Workshop, 2023 | | 2023 |
Multi-Modal Fusion by Meta-Initialization MT Jackson*, SA Malik*, MT Matthews, Y Mohamed-Ahmed arXiv preprint arXiv:2210.04843, 2022 | | 2022 |
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs J Han, J Kossen, M Razzak, L Schut, SA Malik, Y Gal ICML 2024 Workshop on Foundation Models in the Wild, 0 | | |