关注
Brian Staber
Brian Staber
ML engineer, Safran Tech
在 safrangroup.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Stochastic modeling and identification of a hyperelastic constitutive model for laminated composites
B Staber, J Guilleminot, C Soize, J Michopoulos, A Iliopoulos
Computer Methods in Applied Mechanics and Engineering 347, 425-444, 2019
542019
A random field model for anisotropic strain energy functions and its application for uncertainty quantification in vascular mechanics
B Staber, J Guilleminot
Computer Methods in Applied Mechanics and Engineering 333, 94-113, 2018
542018
Stochastic modeling of the Ogden class of stored energy functions for hyperelastic materials: the compressible case
B Staber, J Guilleminot
ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2017
422017
Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability
B Staber, J Guilleminot
Journal of the mechanical behavior of biomedical materials 65, 743-752, 2017
422017
Stochastic modeling of a class of stored energy functions for incompressible hyperelastic materials with uncertainties
B Staber, J Guilleminot
Comptes Rendus. Mécanique 343 (9), 503-514, 2015
422015
Stochastic modeling and generation of random fields of elasticity tensors: a unified information-theoretic approach
B Staber, J Guilleminot
Comptes Rendus. Mécanique 345 (6), 399-416, 2017
392017
Functional approximation and projection of stored energy functions in computational homogenization of hyperelastic materials: A probabilistic perspective
B Staber, J Guilleminot
Computer Methods in Applied Mechanics and Engineering 313, 1-27, 2017
152017
Approximate solutions of Lagrange multipliers for information-theoretic random field models
B Staber, J Guilleminot
SIAM/ASA Journal on Uncertainty Quantification 3 (1), 599-621, 2015
152015
Mmgp: a mesh morphing gaussian process-based machine learning method for regression of physical problems under nonparametrized geometrical variability
F Casenave, B Staber, X Roynard
Advances in Neural Information Processing Systems 36, 2024
62024
Benchmarking Bayesian neural networks and evaluation metrics for regression tasks
B Staber, S Da Veiga
arXiv preprint arXiv:2206.06779, 2022
62022
Loss of ellipticity analysis in non-smooth plasticity
B Staber, S Forest, M Al Kotob, M Mazière, T Rose
International Journal of Solids and Structures 222, 111010, 2021
42021
Kernel Stein Discrepancy thinning: a theoretical perspective of pathologies and a practical fix with regularization
C Bénard, B Staber, S Da Veiga
Advances in Neural Information Processing Systems 36, 2024
32024
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
RC Perez, S Da Veiga, J Garnier, B Staber
International Conference on Artificial Intelligence and Statistics, 1297-1305, 2024
12024
Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
R Carpintero Perez, S da Veiga, J Garnier, B Staber
arXiv e-prints, arXiv: 2402.03838, 2024
2024
Stochastic analysis, simulation and identification of hyperelastic constitutive equations
B Staber
Université Paris-Est, 2018
2018
Analyse stochastique, simulation et identification de lois de comportement hyperélastiques
B Staber
系统目前无法执行此操作,请稍后再试。
文章 1–16