Visualizing data using t-SNE L van der Maaten, G Hinton The Journal of Machine Learning Research 9 (2579-2605), 85, 2008 | 47338* | 2008 |
Densely Connected Convolutional Networks G Huang, Z Liu, L van der Maaten, KQ Weinberger IEEE Conference on Computer Vision and Pattern Recognition, 2016 | 45959 | 2016 |
Dimensionality reduction: A comparative review LJP Van der Maaten, EO Postma, HJ Van den Herik Technical Report TiCC TR 2009-005, 2009 | 3850* | 2009 |
Accelerating t-SNE using Tree-Based Algorithms L Van Der Maaten The Journal of Machine Learning Research 15 (1), 3221-3245, 2014 | 2970 | 2014 |
Clevr: A diagnostic dataset for compositional language and elementary visual reasoning J Johnson, B Hariharan, L Van Der Maaten, L Fei-Fei, C Lawrence Zitnick, ... Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 2346 | 2017 |
Countering adversarial images using input transformations C Guo, M Rana, M Cisse, L Van Der Maaten arXiv preprint arXiv:1711.00117, 2017 | 1555 | 2017 |
3d semantic segmentation with submanifold sparse convolutional networks B Graham, M Engelcke, L Van Der Maaten Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 1540 | 2018 |
Exploring the limits of weakly supervised pretraining D Mahajan, R Girshick, V Ramanathan, K He, M Paluri, Y Li, A Bharambe, ... Proceedings of the European conference on computer vision (ECCV), 181-196, 2018 | 1535 | 2018 |
Self-supervised learning of pretext-invariant representations I Misra, L Maaten Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 1527 | 2020 |
Feature denoising for improving adversarial robustness C Xie, Y Wu, L Maaten, AL Yuille, K He Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 962 | 2019 |
Multi-scale dense networks for resource efficient image classification G Huang, D Chen, T Li, F Wu, L Van Der Maaten, KQ Weinberger arXiv preprint arXiv:1703.09844, 2017 | 961* | 2017 |
Condensenet: An efficient densenet using learned group convolutions G Huang, S Liu, L Van der Maaten, KQ Weinberger Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 949 | 2018 |
Learning a parametric embedding by preserving local structure L van der Maaten Proceedings of AI-STATS, 2009 | 718 | 2009 |
Inferring and executing programs for visual reasoning J Johnson, B Hariharan, L Van Der Maaten, J Hoffman, L Fei-Fei, ... Proceedings of the IEEE international conference on computer vision, 2989-2998, 2017 | 621 | 2017 |
Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation JH Krijthe, L Van der Maaten R package version 0.13, URL https://github. com/jkrijthe/Rtsne, 2015 | 513* | 2015 |
Submanifold sparse convolutional networks B Graham, L Van der Maaten arXiv preprint arXiv:1706.01307, 2017 | 495 | 2017 |
Convolutional networks with dense connectivity G Huang, Z Liu, G Pleiss, L Van Der Maaten, KQ Weinberger IEEE transactions on pattern analysis and machine intelligence 44 (12), 8704 …, 2019 | 476 | 2019 |
Learning Visual Features from Large Weakly Supervised Data A Joulin, L van der Maaten, A Jabri, N Vasilache European Conference on Computer Vision, 2016 | 414 | 2016 |
Simpleshot: Revisiting nearest-neighbor classification for few-shot learning Y Wang, WL Chao, KQ Weinberger, L Van Der Maaten arXiv preprint arXiv:1911.04623, 2019 | 350 | 2019 |
Approximated and user steerable tSNE for progressive visual analytics N Pezzotti, BPF Lelieveldt, L Van Der Maaten, T Höllt, E Eisemann, ... IEEE transactions on visualization and computer graphics 23 (7), 1739-1752, 2016 | 332 | 2016 |