Refined least squares modification of Stokes’ formula LE Sjöberg Manuscripta geodaetica 16 (6), 367-375, 1991 | 166 | 1991 |
Solving Vening Meinesz-Moritz inverse problem in isostasy LE Sjöberg Geophysical Journal International 179 (3), 1527-1536, 2009 | 165 | 2009 |
A general model for modifying Stokes’ formula and its least-squares solution LE Sjöberg Journal of geodesy 77, 459-464, 2003 | 153 | 2003 |
A computational scheme to model the geoid by the modified Stokes formula without gravity reductions LE Sjöberg Journal of geodesy 77, 423-432, 2003 | 149 | 2003 |
Reformulation of Stokes's theory for higher than second‐degree reference field and modification of integration kernels P Vaníček, LE Sjöberg Journal of Geophysical Research: Solid Earth 96 (B4), 6529-6539, 1991 | 144 | 1991 |
New views of the spherical Bouguer gravity anomaly P Vaníček, R Tenzer, LE Sjöberg, Z Martinec, WE Featherstone Geophysical Journal International 159 (2), 460-472, 2004 | 122 | 2004 |
The topographic bias by analytical continuation in physical geodesy LE Sjöberg Journal of Geodesy 81 (5), 345-350, 2007 | 121 | 2007 |
A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2. 0 LE Sjöberg, M Bagherbandi Acta Geophysica 59, 502-525, 2011 | 117 | 2011 |
Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran R Kiamehr, LE Sjöberg Journal of Geodesy 79, 540-551, 2005 | 108 | 2005 |
A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling LE Sjöberg Journal of Geodesy 78, 645-653, 2005 | 108 | 2005 |
Least-Squares modification of Stokes’ and Vening-Meinez’formula by accounting for truncation and potential coefficients errors LE Sjöberg Manuscripta geodaetica 9, 209-229, 1984 | 108 | 1984 |
Topographic effects by the Stokes–Helmert method of geoid and quasi-geoid determinations LE Sjöberg Journal of Geodesy 74, 255-268, 2000 | 106 | 2000 |
Analysis of the refined CRUST1. 0 crustal model and its gravity field R Tenzer, W Chen, D Tsoulis, M Bagherbandi, LE Sjöberg, P Novák, S Jin Surveys in geophysics 36, 139-165, 2015 | 104 | 2015 |
On the quasigeoid to geoid separation. LE Sjöberg Manuscr. Geod. 20 (3), 182-192, 1995 | 97 | 1995 |
Least squares modification of Stokes' and Vening Meinesz'formulas by accounting for errors of truncation, potential coefficients and gravity data LE Sjöberg University of Uppsala, Institute of Geophysics, Department of Geodesy, 1984 | 91 | 1984 |
A solution to the downward continuation effect on the geoid determined by Stokes' formula LE Sjöberg Journal of geodesy 77, 94-100, 2003 | 86 | 2003 |
Higher-degree reference field in the generalized Stokes-Helmert scheme for geoid computation P Vaníček, M Najafi, Z Martinec, L Harrie, LE Sjöberg Journal of Geodesy 70, 176-182, 1995 | 84 | 1995 |
Comparison of some methods of modifying Stokes' formula LE Sjöberg Bollettino di geodesia e scienze affini 45 (3), 229-248, 1986 | 80 | 1986 |
Gravity inversion and integration LE Sjöberg, M Bagherbandi Springer International Publishing AG, 2017 | 78 | 2017 |
Comparison of remove-compute-restore and least squares modification of Stokes' formula techniques to quasi-geoid determination over the Auvergne test area H Yildiz, R Forsberg, J Ågren, C Tscherning, L Sjöberg Journal of Geodetic Science 2 (1), 53-64, 2012 | 73 | 2012 |