关注
Lars Sjöberg
Lars Sjöberg
professor i geodesi
在 kth.se 的电子邮件经过验证
标题
引用次数
引用次数
年份
Refined least squares modification of Stokes’ formula
LE Sjöberg
Manuscripta geodaetica 16 (6), 367-375, 1991
1661991
Solving Vening Meinesz-Moritz inverse problem in isostasy
LE Sjöberg
Geophysical Journal International 179 (3), 1527-1536, 2009
1652009
A general model for modifying Stokes’ formula and its least-squares solution
LE Sjöberg
Journal of geodesy 77, 459-464, 2003
1532003
A computational scheme to model the geoid by the modified Stokes formula without gravity reductions
LE Sjöberg
Journal of geodesy 77, 423-432, 2003
1492003
Reformulation of Stokes's theory for higher than second‐degree reference field and modification of integration kernels
P Vaníček, LE Sjöberg
Journal of Geophysical Research: Solid Earth 96 (B4), 6529-6539, 1991
1441991
New views of the spherical Bouguer gravity anomaly
P Vaníček, R Tenzer, LE Sjöberg, Z Martinec, WE Featherstone
Geophysical Journal International 159 (2), 460-472, 2004
1222004
The topographic bias by analytical continuation in physical geodesy
LE Sjöberg
Journal of Geodesy 81 (5), 345-350, 2007
1212007
A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2. 0
LE Sjöberg, M Bagherbandi
Acta Geophysica 59, 502-525, 2011
1172011
Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran
R Kiamehr, LE Sjöberg
Journal of Geodesy 79, 540-551, 2005
1082005
A discussion on the approximations made in the practical implementation of the remove–compute–restore technique in regional geoid modelling
LE Sjöberg
Journal of Geodesy 78, 645-653, 2005
1082005
Least-Squares modification of Stokes’ and Vening-Meinez’formula by accounting for truncation and potential coefficients errors
LE Sjöberg
Manuscripta geodaetica 9, 209-229, 1984
1081984
Topographic effects by the Stokes–Helmert method of geoid and quasi-geoid determinations
LE Sjöberg
Journal of Geodesy 74, 255-268, 2000
1062000
Analysis of the refined CRUST1. 0 crustal model and its gravity field
R Tenzer, W Chen, D Tsoulis, M Bagherbandi, LE Sjöberg, P Novák, S Jin
Surveys in geophysics 36, 139-165, 2015
1042015
On the quasigeoid to geoid separation.
LE Sjöberg
Manuscr. Geod. 20 (3), 182-192, 1995
971995
Least squares modification of Stokes' and Vening Meinesz'formulas by accounting for errors of truncation, potential coefficients and gravity data
LE Sjöberg
University of Uppsala, Institute of Geophysics, Department of Geodesy, 1984
911984
A solution to the downward continuation effect on the geoid determined by Stokes' formula
LE Sjöberg
Journal of geodesy 77, 94-100, 2003
862003
Higher-degree reference field in the generalized Stokes-Helmert scheme for geoid computation
P Vaníček, M Najafi, Z Martinec, L Harrie, LE Sjöberg
Journal of Geodesy 70, 176-182, 1995
841995
Comparison of some methods of modifying Stokes' formula
LE Sjöberg
Bollettino di geodesia e scienze affini 45 (3), 229-248, 1986
801986
Gravity inversion and integration
LE Sjöberg, M Bagherbandi
Springer International Publishing AG, 2017
782017
Comparison of remove-compute-restore and least squares modification of Stokes' formula techniques to quasi-geoid determination over the Auvergne test area
H Yildiz, R Forsberg, J Ågren, C Tscherning, L Sjöberg
Journal of Geodetic Science 2 (1), 53-64, 2012
732012
系统目前无法执行此操作,请稍后再试。
文章 1–20