Dropedge: Towards deep graph convolutional networks on node classification Y Rong, W Huang, T Xu, J Huang arXiv preprint arXiv:1907.10903, 2019 | 1404 | 2019 |
Self-supervised graph transformer on large-scale molecular data Y Rong, Y Bian, T Xu, W Xie, Y Wei, W Huang, J Huang Advances in neural information processing systems 33, 12559-12571, 2020 | 622 | 2020 |
Rumor detection on social media with bi-directional graph convolutional networks T Bian, X Xiao, T Xu, P Zhao, W Huang, Y Rong, J Huang Proceedings of the AAAI conference on artificial intelligence 34 (01), 549-556, 2020 | 564 | 2020 |
Graph representation learning via graphical mutual information maximization Z Peng, W Huang, M Luo, Q Zheng, Y Rong, T Xu, J Huang Proceedings of The Web Conference 2020, 259-270, 2020 | 527 | 2020 |
Progressive feature alignment for unsupervised domain adaptation C Chen, W Xie, W Huang, Y Rong, X Ding, Y Huang, T Xu, J Huang Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019 | 455 | 2019 |
Deep multimodal fusion by channel exchanging Y Wang, W Huang, F Sun, T Xu, Y Rong, J Huang Advances in neural information processing systems 33, 4835-4845, 2020 | 220 | 2020 |
MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm Q Bai, S Tan, T Xu, H Liu, J Huang, X Yao Briefings in bioinformatics 22 (3), bbaa161, 2021 | 195 | 2021 |
A restricted black-box adversarial framework towards attacking graph embedding models H Chang, Y Rong, T Xu, W Huang, H Zhang, P Cui, W Zhu, J Huang Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 3389-3396, 2020 | 143 | 2020 |
Graph information bottleneck for subgraph recognition J Yu, T Xu, Y Rong, Y Bian, J Huang, R He arXiv preprint arXiv:2010.05563, 2020 | 138 | 2020 |
Generative models for de novo drug design X Tong, X Liu, X Tan, X Li, J Jiang, Z Xiong, T Xu, H Jiang, N Qiao, ... Journal of Medicinal Chemistry 64 (19), 14011-14027, 2021 | 112 | 2021 |
Transformer for graphs: An overview from architecture perspective E Min, R Chen, Y Bian, T Xu, K Zhao, W Huang, P Zhao, J Huang, ... arXiv preprint arXiv:2202.08455, 2022 | 106 | 2022 |
Tackling over-smoothing for general graph convolutional networks W Huang, Y Rong, T Xu, F Sun, J Huang arXiv preprint arXiv:2008.09864, 2020 | 98 | 2020 |
Local augmentation for graph neural networks S Liu, R Ying, H Dong, L Li, T Xu, Y Rong, P Zhao, J Huang, D Wu International conference on machine learning, 14054-14072, 2022 | 97 | 2022 |
Dtwnet: a dynamic time warping network X Cai, T Xu, J Yi, J Huang, S Rajasekaran Advances in neural information processing systems 32, 2019 | 90 | 2019 |
Application advances of deep learning methods for de novo drug design and molecular dynamics simulation Q Bai, S Liu, Y Tian, T Xu, AJ Banegas‐Luna, H Pérez‐Sánchez, J Huang, ... Wiley Interdisciplinary Reviews: Computational Molecular Science 12 (3), e1581, 2022 | 88 | 2022 |
Drugood: Out-of-distribution dataset curator and benchmark for ai-aided drug discovery–a focus on affinity prediction problems with noise annotations Y Ji, L Zhang, J Wu, B Wu, L Li, LK Huang, T Xu, Y Rong, J Ren, D Xue, ... Proceedings of the AAAI Conference on Artificial Intelligence 37 (7), 8023-8031, 2023 | 77* | 2023 |
Geometrically equivariant graph neural networks: A survey J Han, Y Rong, T Xu, W Huang arXiv preprint arXiv:2202.07230, 2022 | 65 | 2022 |
Multi-view sparse co-clustering via proximal alternating linearized minimization J Sun, J Lu, T Xu, J Bi International Conference on Machine Learning, 757-766, 2015 | 65 | 2015 |
Multi-view graph neural networks for molecular property prediction H Ma, Y Bian, Y Rong, W Huang, T Xu, W Xie, G Ye, J Huang arXiv preprint arXiv:2005.13607, 2020 | 61* | 2020 |
Molecular graph enhanced transformer for retrosynthesis prediction K Mao, X Xiao, T Xu, Y Rong, J Huang, P Zhao Neurocomputing 457, 193-202, 2021 | 58 | 2021 |