关注
Rylan Schaeffer
Rylan Schaeffer
在 stanford.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Are emergent abilities of Large Language Models a mirage?
R Schaeffer, B Miranda, S Koyejo
Advances in Neural Information Processing Systems, 2023
2702023
Decodingtrust: A comprehensive assessment of trustworthiness in gpt models
B Wang, W Chen, H Pei, C Xie, M Kang, C Zhang, C Xu, Z Xiong, R Dutta, ...
Advances in Neural Information Processing Systems (Datasets & Benchmarks Track), 2023
2052023
No free lunch from deep learning in neuroscience: A case study through models of the entorhinal-hippocampal circuit
R Schaeffer, M Khona, I Fiete
Advances in Neural Information Processing Systems, 2022
552022
Reverse-engineering recurrent neural network solutions to a hierarchical inference task for mice
R Schaeffer, M Khona, L Meshulam, IR Fiete
Advances in Neural Information Processing Systems, 2020
362020
Double descent demystified: Identifying, interpreting & ablating the sources of a deep learning puzzle
R Schaeffer, M Khona, Z Robertson, A Boopathy, K Pistunova, JW Rocks, ...
arXiv preprint arXiv:2303.14151, 2023
162023
Investigating data contamination for pre-training language models
M Jiang, KZ Liu, M Zhong, R Schaeffer, S Ouyang, J Han, S Koyejo
arXiv preprint arXiv:2401.06059, 2024
142024
Many-shot jailbreaking
C Anil, E Durmus, M Sharma, J Benton, S Kundu, J Batson, N Rimsky, ...
Anthropic, April, 2024
122024
Self-Supervised Learning of Representations for Space Generates Multi-Modular Grid Cells
R Schaeffer, M Khona, T Ma, C Eyzaguirre, S Koyejo, IR Fiete
Advances in Neural Information Processing Systems (NeurIPS), 2023
122023
Pretraining on the test set is all you need
R Schaeffer
arXiv preprint arXiv:2309.08632, 2023
122023
Brain-wide representations of prior information in mouse decision-making
C Findling, F Hubert, International Brain Laboratory, L Acerbi, B Benson, ...
BioRxiv, 2023.07. 04.547684, 2023
122023
A brain-wide map of neural activity during complex behaviour
International Brain Laboratory, B Benson, J Benson, D Birman, ...
Biorxiv, 2023.07. 04.547681, 2023
102023
Deceptive alignment monitoring
A Carranza, D Pai, R Schaeffer, A Tandon, S Koyejo
ICML 2023 Workshop: Adversarial Machine Learning Frontiers, 2023
72023
Is model collapse inevitable? breaking the curse of recursion by accumulating real and synthetic data
M Gerstgrasser, R Schaeffer, A Dey, R Rafailov, H Sleight, J Hughes, ...
arXiv preprint arXiv:2404.01413, 2024
62024
Emergence of sparse representations from noise
T Bricken, R Schaeffer, B Olshausen, G Kreiman
42023
Efficient online inference for nonparametric mixture models
R Schaeffer, B Bordelon, M Khona, W Pan, IR Fiete
Uncertainty in Artificial Intelligence, 2072-2081, 2021
42021
Does Data Contamination Make a Difference? Insights from Intentionally Contaminating Pre-training Data For Language Models
M Jiang, K Liu, M Zhong, R Schaeffer, S Ouyang, J Han, S Koyejo
ICLR 2024 Workshop on Navigating and Addressing Data Problems for Foundation …, 2024
32024
An Information-Theoretic Understanding of Maximum Manifold Capacity Representations
B Isik, V Lecomte, R Schaeffer, Y LeCun, M Khona, R Shwartz-Ziv, ...
NeurIPS 2023 Workshop: Unifying Representations in Neural Models, 2023
22023
An Information-Theoretic Understanding of Maximum Manifold Capacity Representations
V Lecomte, R Schaeffer, B Isik, M Khona, Y LeCun, S Koyejo, A Gromov, ...
NeurIPS 2023 Workshop: Symmetry and Geometry in Neural Representations, 2023
22023
Testing assumptions underlying a unified theory for the origin of grid cells
R Schaeffer, M Khona, A Bertagnoli, S Koyejo, IR Fiete
arXiv preprint arXiv:2311.16295, 2023
22023
Divergence at the Interpolation Threshold: Identifying, Interpreting & Ablating the Sources of a Deep Learning Puzzle
R Schaeffer, Z Robertson, A Boopathy, M Khona, I Fiete, A Gromov, ...
NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning, 2023
22023
系统目前无法执行此操作,请稍后再试。
文章 1–20