关注
Qincheng Lu
Qincheng Lu
在 mail.mcgill.ca 的电子邮件经过验证
标题
引用次数
引用次数
年份
Revisiting heterophily for graph neural networks
S Luan, C Hua, Q Lu, J Zhu, M Zhao, S Zhang, XW Chang, D Precup
Advances in neural information processing systems 35, 1362-1375, 2022
2152022
Is heterophily a real nightmare for graph neural networks to do node classification?
S Luan, C Hua, Q Lu, J Zhu, M Zhao, S Zhang, XW Chang, D Precup
arXiv preprint arXiv:2109.05641, 2021
1332021
When do graph neural networks help with node classification? investigating the homophily principle on node distinguishability
S Luan, C Hua, M Xu, Q Lu, J Zhu, XW Chang, J Fu, J Leskovec, D Precup
Advances in Neural Information Processing Systems 36, 2024
522024
When do we need gnn for node classification?
S Luan, C Hua, Q Lu, J Zhu, XW Chang, D Precup
arXiv preprint arXiv:2210.16979, 2022
212022
When do we need graph neural networks for node classification?
S Luan, C Hua, Q Lu, J Zhu, XW Chang, D Precup
International Conference on Complex Networks and Their Applications, 37-48, 2023
102023
The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and challenges
S Luan, C Hua, Q Lu, L Ma, L Wu, X Wang, M Xu, XW Chang, D Precup, ...
arXiv preprint arXiv:2407.09618, 2024
72024
Representation learning on heterophilic graph with directional neighborhood attention
Q Lu, J Zhu, S Luan, XW Chang
arXiv preprint arXiv:2403.01475, 2024
62024
GCEPNet: Graph Convolution-Enhanced Expectation Propagation for Massive MIMO Detection
Q Lu, S Luan, XW Chang
arXiv preprint arXiv:2404.14886, 2024
52024
Flexible diffusion scopes with parameterized laplacian for heterophilic graph learning
Q Lu, J Zhu, S Luan, XW Chang
arXiv preprint arXiv:2409.09888, 2024
32024
Are Heterophily-Specific GNNs and Homophily Metrics Really Effective? Evaluation Pitfalls and New Benchmarks
S Luan, Q Lu, C Hua, X Wang, J Zhu, XW Chang, G Wolf, J Tang
arXiv preprint arXiv:2409.05755, 2024
32024
When do graph neural networks help with node classification? investigating the impact of homophily principle on node distinguishability
S Luan, C Hua, M Xu, Q Lu, J Zhu, XW Chang, J Fu, J Leskovec, D Precup
arXiv preprint arXiv:2304.14274, 2023
32023
Is Heterophily A Real Nightmare For Graph Neural Networks on Performing Node Classification?
S Luan, C Hua, Q Lu, J Zhu, H Zhao, S Zhang, XW Chang, D Precup
32021
Bidirectional Generative Pre-training for Improving Time Series Representation Learning
Z Song, Q Lu, H Zhu, Y Li
arXiv preprint arXiv:2402.09558, 2024
12024
Bidirectional generative pretraining for improving healthcare time-series representation learning
Z Song, Q Lu, H Zhu, D Buckeridge, Y Li
Machine Learning for Healthcare Conference (MLHC), 2024b. URL https …, 2024
12024
Success Probabilities of L2-norm Regularized Babai Detectors and Maximization
XW Chang, Q Lu, Y Xu
2023 IEEE International Symposium on Information Theory (ISIT), 1219-1224, 2023
12023
TimelyGPT: Recurrent Convolutional Transformer for Long Time-series Representation
Z Song, Q Lu, H Xu, Y Li
2023
A Tutorial on Heterophilic Graph Learning (LoG 2024)
S Luan, C Hua, Q Lu
TrajGPT: Healthcare Time-Series Representation Learning for Trajectory Prediction
Z Song, Q Lu, H Zhu, DL Buckeridge, Y Li
NeurIPS Workshop on Time Series in the Age of Large Models, 0
系统目前无法执行此操作,请稍后再试。
文章 1–18