Mode regularized generative adversarial networks T Che, Y Li, AP Jacob, Y Bengio, W Li arXiv preprint arXiv:1612.02136, 2016 | 694 | 2016 |
Metagan: An adversarial approach to few-shot learning R Zhang, T Che, Z Ghahramani, Y Bengio, Y Song Advances in neural information processing systems 31, 2018 | 592 | 2018 |
Maximum-likelihood augmented discrete generative adversarial networks T Che, Y Li, R Zhang, RD Hjelm, W Li, Y Song, Y Bengio arXiv preprint arXiv:1702.07983, 2017 | 308 | 2017 |
Boundary-seeking generative adversarial networks RD Hjelm, AP Jacob, T Che, A Trischler, K Cho, Y Bengio arXiv preprint arXiv:1702.08431, 2017 | 219 | 2017 |
Architectural complexity measures of recurrent neural networks S Zhang, Y Wu, T Che, Z Lin, R Memisevic, RR Salakhutdinov, Y Bengio Advances in neural information processing systems 29, 2016 | 191 | 2016 |
Residual connections encourage iterative inference S Jastrzębski, D Arpit, N Ballas, V Verma, T Che, Y Bengio arXiv preprint arXiv:1710.04773, 2017 | 139 | 2017 |
Your GAN is secretly an energy-based model and you should use discriminator driven latent sampling T Che, R Zhang, J Sohl-Dickstein, H Larochelle, L Paull, Y Cao, Y Bengio Advances in Neural Information Processing Systems 33, 12275-12287, 2020 | 115 | 2020 |
Guided conditional diffusion for controllable traffic simulation Z Zhong, D Rempe, D Xu, Y Chen, S Veer, T Che, B Ray, M Pavone 2023 IEEE International Conference on Robotics and Automation (ICRA), 3560-3566, 2023 | 72 | 2023 |
Deep verifier networks: Verification of deep discriminative models with deep generative models T Che, X Liu, S Li, Y Ge, R Zhang, C Xiong, Y Bengio Proceedings of the AAAI conference on artificial intelligence 35 (8), 7002-7010, 2021 | 61 | 2021 |
Rethinking distributional matching based domain adaptation B Li, Y Wang, T Che, S Zhang, S Zhao, P Xu, W Zhou, Y Bengio, ... arXiv preprint arXiv:2006.13352, 2020 | 54 | 2020 |
Energy-based open-world uncertainty modeling for confidence calibration Y Wang, B Li, T Che, K Zhou, Z Liu, D Li Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 49 | 2021 |
Sparse mixture-of-experts are domain generalizable learners B Li, Y Shen, J Yang, Y Wang, J Ren, T Che, J Zhang, Z Liu arXiv preprint arXiv:2206.04046, 2022 | 41 | 2022 |
Conservative wasserstein training for pose estimation X Liu, Y Zou, T Che, P Ding, P Jia, J You, BVK Kumar Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 37 | 2019 |
Auto3d: Novel view synthesis through unsupervisely learned variational viewpoint and global 3d representation X Liu, T Che, Y Lu, C Yang, S Li, J You European Conference on Computer Vision, 52-71, 2020 | 24 | 2020 |
Emernerf: Emergent spatial-temporal scene decomposition via self-supervision J Yang, B Ivanovic, O Litany, X Weng, SW Kim, B Li, T Che, D Xu, S Fidler, ... arXiv preprint arXiv:2311.02077, 2023 | 17 | 2023 |
Designing ascy-compliant concurrent search data structures TA David, R Guerraoui, T Che, V Trigonakis | 12 | 2014 |
Robust and controllable object-centric learning through energy-based models R Zhang, T Che, B Ivanovic, R Wang, M Pavone, Y Bengio, L Paull arXiv preprint arXiv:2210.05519, 2022 | 11 | 2022 |
Learning from teaching regularization: Generalizable correlations should be easy to imitate C Jin, T Che, H Peng, Y Li, M Pavone arXiv preprint arXiv:2402.02769, 2024 | 7 | 2024 |
Combining model-based and model-free RL via multi-step control variates T Che, Y Lu, G Tucker, S Bhupatiraju, S Gu, S Levine, Y Bengio | 6 | 2018 |
spe: symmetrical prompt enhancement for fact probing Y Li, T Che, Y Wang, Z Jiang, C Xiong, S Chaturvedi | 5* | |