The primes contain arbitrarily long arithmetic progressions B Green, T Tao Annals of mathematics, 481-547, 2008 | 1103 | 2008 |
The Princeton companion to mathematics T Gowers, J Barrow-Green, I Leader Princeton University Press, 2010 | 594 | 2010 |
Linear equations in primes B Green, T Tao Annals of mathematics, 1753-1850, 2010 | 439* | 2010 |
An inverse theorem for the Gowers U s+1 [N]-norm B Green, T Tao, T Ziegler Annals of Mathematics, 1231-1372, 2012 | 302 | 2012 |
The Möbius function is strongly orthogonal to nilsequences B Green, T Tao Annals of Mathematics, 541-566, 2012 | 274 | 2012 |
A Szemerédi-type regularity lemma in abelian groups, with applications B Green Geometric & Functional Analysis GAFA 15 (2), 340-376, 2005 | 268 | 2005 |
An inverse theorem for the Gowers norm B Green, T Tao Proceedings of the Edinburgh Mathematical Society 51 (1), 73-153, 2008 | 248 | 2008 |
The structure of approximate groups E Breuillard, B Green, T Tao Publications mathématiques de l'IHÉS 116, 115-221, 2012 | 247 | 2012 |
The quantitative behaviour of polynomial orbits on nilmanifolds B Green, T Tao Annals of Mathematics, 465-540, 2012 | 232 | 2012 |
Approximate subgroups of linear groups E Breuillard, B Green, T Tao Geometric and Functional Analysis 21 (4), 774-819, 2011 | 230 | 2011 |
Roth's theorem in the primes B Green Annals of mathematics, 1609-1636, 2005 | 206 | 2005 |
Freiman's theorem in an arbitrary abelian group B Green, IZ Ruzsa Journal of the London Mathematical Society 75 (1), 163-175, 2007 | 197 | 2007 |
Finite field models in additive combinatorics B Green arXiv preprint math/0409420, 2004 | 175 | 2004 |
On sets defining few ordinary lines B Green, T Tao Discrete & Computational Geometry 50 (2), 409-468, 2013 | 169 | 2013 |
The distribution of polynomials over finite fields, with applications to the Gowers norms B Green, T Tao arXiv preprint arXiv:0711.3191, 2007 | 153 | 2007 |
Sum-free sets in abelian groups B Green, IZ Ruzsa Israel Journal of Mathematics 147 (1), 157-188, 2005 | 152 | 2005 |
Long gaps between primes K Ford, B Green, S Konyagin, J Maynard, T Tao Journal of the American Mathematical Society 31 (1), 65-105, 2018 | 117 | 2018 |
An arithmetic regularity lemma, an associated counting lemma, and applications B Green, T Tao An Irregular Mind: Szemerédi is 70, 261-334, 2010 | 105 | 2010 |
The Cameron–Erdős conjecture B Green Bulletin of the London Mathematical Society 36 (6), 769-778, 2004 | 105 | 2004 |
Arithmetic progressions in sumsets B Green Geometric & Functional Analysis GAFA 12 (3), 584-597, 2002 | 94 | 2002 |