关注
Lane E. Schultz
Lane E. Schultz
University of Wiscoinsin-Madison
在 wisc.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Machine learning prediction of the critical cooling rate for metallic glasses from expanded datasets and elemental features
BT Afflerbach, C Francis, LE Schultz, J Spethson, V Meschke, E Strand, ...
Chemistry of Materials 34 (7), 2945-2954, 2022
122022
Exploration of characteristic temperature contributions to metallic glass forming ability
LE Schultz, B Afflerbach, C Francis, PM Voyles, I Szlufarska, D Morgan
Computational Materials Science 196, 110494, 2021
92021
Microalloying effect in ternary Al-Sm-X (X= Ag, Au, Cu) metallic glasses studied by ab initio molecular dynamics
J Xi, G Bokas, LE Schultz, M Gao, L Zhao, Y Shen, JH Perepezko, ...
Computational Materials Science 185, 109958, 2020
92020
Quantitative 10–50 kHz X-ray radiography of liquid spray distributions using a rotating-anode tube source
BR Halls, JR Gord, LE Schultz, WC Slowman, MDA Lightfoot, S Roy, ...
International Journal of Multiphase Flow 109, 123-130, 2018
92018
Molecular simulation-derived features for machine learning predictions of metal glass forming ability
BT Afflerbach, L Schultz, JH Perepezko, PM Voyles, I Szlufarska, ...
Computational Materials Science 199, 110728, 2021
52021
Development of a portable water quality sensor for river monitoring from small rafts
J Schneider, LE Schultz, S Mancha, E Hicks, RN Smith
OCEANS 2016 MTS/IEEE Monterey, 1-10, 2016
52016
Molecular dynamic characteristic temperatures for predicting metallic glass forming ability
LE Schultz, B Afflerbach, I Szlufarska, D Morgan
Computational Materials Science 201, 110877, 2022
42022
Design of torsional test stand for micro-Newton force detection
LE Schultz, TJ Cogger, R Good, J Schneider, R Rothschild, W Nollet
2018 Aerodynamic Measurement Technology and Ground Testing Conference, 3737, 2018
22018
Determining Domain of Machine Learning Models using Kernel Density Estimates: Applications in Materials Property Prediction
LE Schultz, Y Wang, R Jacobs, D Morgan
arXiv preprint arXiv:2406.05143, 2024
12024
Foundry-ML-Software and Services to Simplify Access to Machine Learning Datasets in Materials Science
K Schmidt, A Scourtas, L Ward, S Wangen, M Schwarting, I Darling, ...
Journal of Open Source Software 9 (93), 5467, 2024
12024
Machine Learning Materials Properties with Accurate Predictions, Uncertainty Estimates, Domain Guidance, and Persistent Online Accessibility
R Jacobs, LE Schultz, A Scourtas, KJ Schmidt, O Price-Skelly, W Engler, ...
arXiv preprint arXiv:2406.15650, 2024
2024
Ultra-fast Oxygen Conduction in Sill\'en Oxychlorides
J Meng, MS Sheikh, LE Schultz, WO Nachlas, J Liu, MP Polak, R Jacobs, ...
arXiv preprint arXiv:2406.07723, 2024
2024
Accelerating Ensemble Error Bar Prediction with Single Models Fits
V Agrawal, S Zhang, LE Schultz, D Morgan
arXiv preprint arXiv:2404.09896, 2024
2024
Discovery of New Fast Oxygen Conductors: Bi2MO4x (M= rare earth, X= halogen) Via Unsupervised Machine Learning
J Meng, L Schultz, R Jacobs, D Morgan
Electrochemical Society Meeting Abstracts 243, 2783-2783, 2023
2023
Optimization of a High-Speed X-Ray Imaging System for Studying Sprays
LE Schultz, WC Slowman, TR Meyer, MN Slipchenko
2016
系统目前无法执行此操作,请稍后再试。
文章 1–15