Longitudinal changes in cortical thickness associated with normal aging M Thambisetty, J Wan, A Carass, Y An, JL Prince, SM Resnick NeuroImage 52 (4), 1215-1223, 2010 | 385 | 2010 |
Retinal layer segmentation of macular OCT images using boundary classification A Lang, A Carass, M Hauser, ES Sotirchos, PA Calabresi, HS Ying, ... Biomedical optics express 4 (7), 1133-1152, 2013 | 339 | 2013 |
Longitudinal multiple sclerosis lesion segmentation: resource & challenge A Carass, S Roy, A Jog, JL Cuzzocreo, E Magrath, A Gherman, J Button, ... NeuroImage 148 (C), 77-102, 2017 | 320 | 2017 |
Why rankings of biomedical image analysis competitions should be interpreted with care L Maier-Hein, M Eisenmann, A Reinke, S Onogur, M Stankovic, P Scholz, ... Nature communications 9 (1), 5217, 2018 | 295 | 2018 |
MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans AM Mendrik, KL Vincken, HJ Kuijf, M Breeuwer, W Bouvy, J de Bresser, ... Computational Intelligence and Neuroscience, 2015 | 278 | 2015 |
Cross-modality image synthesis from unpaired data using cyclegan: Effects of gradient consistency loss and training data size Y Hiasa, Y Otake, M Takao, T Matsuoka, K Takashima, A Carass, ... Simulation and Synthesis in Medical Imaging: Third International Workshop …, 2018 | 253 | 2018 |
DeepHarmony: A deep learning approach to contrast harmonization across scanner changes BE Dewey, C Zhao, JC Reinhold, A Carass, KC Fitzgerald, ES Sotirchos, ... Magnetic resonance imaging 64, 160-170, 2019 | 198 | 2019 |
Random Forest Regression for Magnetic Resonance Image Synthesis A Jog, A Carass, S Roy, DL Pham, JL Prince Medical Image Analysis 35, 475-488, 2017 | 197 | 2017 |
Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN H Yang, J Sun, A Carass, C Zhao, J Lee, Z Xu, J Prince Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2018 | 183 | 2018 |
Evaluating the impact of intensity normalization on MR image synthesis JC Reinhold, BE Dewey, A Carass, JL Prince Medical Imaging 2019: Image Processing 10949, 890-898, 2019 | 178 | 2019 |
Magnetic Resonance Image Example Based Contrast Synthesis S Roy, A Carass, J Prince IEEE Transactions on Medical Imaging 32 (12), 2348-2363, 2013 | 156 | 2013 |
Evaluating white matter lesion segmentations with refined Sørensen-Dice analysis A Carass, S Roy, A Gherman, JC Reinhold, A Jesson, T Arbel, O Maier, ... Scientific reports 10 (1), 8242, 2020 | 149 | 2020 |
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software BC Lucas, JA Bogovic, A Carass, PL Bazin, JL Prince, DL Pham, ... Neuroinformatics 8, 5-17, 2010 | 147 | 2010 |
Simple paradigm for extra-cerebral tissue removal: Algorithm and analysis A Carass, J Cuzzocreo, MB Wheeler, PL Bazin, SM Resnick, JL Prince NeuroImage 56 (4), 1982-1992, 2011 | 143 | 2011 |
Consistent cortical reconstruction and multi-atlas brain segmentation Y Huo, AJ Plassard, A Carass, SM Resnick, DL Pham, JL Prince, ... NeuroImage 138, 197-210, 2016 | 126 | 2016 |
Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN H Yang, J Sun, A Carass, C Zhao, J Lee, JL Prince, Z Xu IEEE transactions on medical imaging 39 (12), 4249-4261, 2020 | 124 | 2020 |
Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images A Carass, JL Cuzzocreo, S Han, CR Hernandez-Castillo, PE Rasser, ... NeuroImage 183, 150-172, 2018 | 96 | 2018 |
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging S Roy, WT Wang, A Carass, JL Prince, JA Butman, DL Pham Journal of Nuclear Medicine 55 (12), 2071-2077, 2014 | 91 | 2014 |
A compressed sensing approach for MR tissue contrast synthesis S Roy, A Carass, J Prince Information Processing in Medical Imaging: 22nd International Conference …, 2011 | 91 | 2011 |
Applications of a deep learning method for anti-aliasing and super-resolution in MRI C Zhao, M Shao, A Carass, H Li, BE Dewey, LM Ellingsen, J Woo, ... Magnetic resonance imaging 64, 132-141, 2019 | 89 | 2019 |