关注
Hao Wang
Hao Wang
MIT-IBM Watson AI Lab
在 g.harvard.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Repairing without retraining: Avoiding disparate impact with counterfactual distributions
H Wang, B Ustun, F Calmon
International Conference on Machine Learning, 6618-6627, 2019
92*2019
On the robustness of information-theoretic privacy measures and mechanisms
M Diaz, H Wang, FP Calmon, L Sankar
IEEE Transactions on Information Theory 66 (4), 1949-1978, 2019
552019
An information-theoretic view of generalization via Wasserstein distance
H Wang, M Diaz, JCS Santos Filho, FP Calmon
2019 IEEE International Symposium on Information Theory (ISIT), 577-581, 2019
532019
An estimation-theoretic view of privacy
H Wang, FP Calmon
2017 55th Annual Allerton Conference on Communication, Control, and …, 2017
412017
Privacy with estimation guarantees
H Wang, L Vo, FP Calmon, M Médard, KR Duffy, M Varia
IEEE Transactions on Information Theory 65 (12), 8025-8042, 2019
402019
Beyond adult and compas: Fair multi-class prediction via information projection
W Alghamdi, H Hsu, H Jeong, H Wang, P Michalak, S Asoodeh, F Calmon
Advances in Neural Information Processing Systems 35, 38747-38760, 2022
39*2022
Analyzing the generalization capability of SGLD using properties of Gaussian channels
H Wang, Y Huang, R Gao, F Calmon
Advances in Neural Information Processing Systems 34, 24222-24234, 2021
34*2021
Fairness without imputation: A decision tree approach for fair prediction with missing values
H Jeong, H Wang, FP Calmon
Proceedings of the AAAI Conference on Artificial Intelligence 36 (9), 9558-9566, 2022
332022
To split or not to split: The impact of disparate treatment in classification
H Wang, H Hsu, M Diaz, FP Calmon
IEEE Transactions on Information Theory 67 (10), 6733-6757, 2021
322021
Model projection: Theory and applications to fair machine learning
W Alghamdi, S Asoodeh, H Wang, FP Calmon, D Wei, KN Ramamurthy
2020 IEEE International Symposium on Information Theory (ISIT), 2711-2716, 2020
212020
The utility cost of robust privacy guarantees
H Wang, M Diaz, FP Calmon, L Sankar
2018 IEEE International Symposium on Information Theory (ISIT), 706-710, 2018
172018
Generalization bounds for noisy iterative algorithms using properties of additive noise channels
H Wang, R Gao, FP Calmon
Journal of machine learning research 24 (26), 1-43, 2023
152023
On the direction of discrimination: An information-theoretic analysis of disparate impact in machine learning
H Wang, B Ustun, FP Calmon
2018 IEEE International Symposium on Information Theory (ISIT), 126-130, 2018
102018
Aleatoric and epistemic discrimination: Fundamental limits of fairness interventions
H Wang, L He, R Gao, F Calmon
Advances in Neural Information Processing Systems 36, 2024
92024
Post-processing private synthetic data for improving utility on selected measures
H Wang, S Sudalairaj, J Henning, K Greenewald, A Srivastava
Advances in Neural Information Processing Systems 36, 2024
62024
Adapting fairness interventions to missing values
R Feng, F Calmon, H Wang
Advances in Neural Information Processing Systems 36, 2024
32024
The impact of split classifiers on group fairness
H Wang, H Hsu, M Diaz, FP Calmon
2021 IEEE International Symposium on Information Theory (ISIT), 3179-3184, 2021
32021
Private Synthetic Data Meets Ensemble Learning
H Sun, N Azizan, A Srivastava, H Wang
arXiv preprint arXiv:2310.09729, 2023
12023
Quantifying Representation Reliability in Self-Supervised Learning Models
YJ Park, H Wang, S Ardeshir, N Azizan
arXiv preprint arXiv:2306.00206, 2023
1*2023
Analyzing generalization of neural networks through loss path kernels
Y Chen, W Huang, H Wang, C Loh, A Srivastava, L Nguyen, L Weng
Advances in Neural Information Processing Systems 36, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20